| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slotsdifocndx | Structured version Visualization version GIF version | ||
| Description: The index of the slot for the orthocomplementation is not the index of other slots. Formerly part of proof for prstcocval 49536. (Contributed by AV, 12-Nov-2024.) |
| Ref | Expression |
|---|---|
| slotsdifocndx | ⊢ ((oc‘ndx) ≠ (comp‘ndx) ∧ (oc‘ndx) ≠ (Hom ‘ndx)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 12464 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 2 | 1nn 12198 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 3 | 1, 2 | decnncl 12675 | . . . . 5 ⊢ ;11 ∈ ℕ |
| 4 | 3 | nnrei 12196 | . . . 4 ⊢ ;11 ∈ ℝ |
| 5 | 5nn 12273 | . . . . 5 ⊢ 5 ∈ ℕ | |
| 6 | 1lt5 12367 | . . . . 5 ⊢ 1 < 5 | |
| 7 | 1, 1, 5, 6 | declt 12683 | . . . 4 ⊢ ;11 < ;15 |
| 8 | 4, 7 | ltneii 11293 | . . 3 ⊢ ;11 ≠ ;15 |
| 9 | ocndx 17350 | . . . 4 ⊢ (oc‘ndx) = ;11 | |
| 10 | ccondx 17382 | . . . 4 ⊢ (comp‘ndx) = ;15 | |
| 11 | 9, 10 | neeq12i 2992 | . . 3 ⊢ ((oc‘ndx) ≠ (comp‘ndx) ↔ ;11 ≠ ;15) |
| 12 | 8, 11 | mpbir 231 | . 2 ⊢ (oc‘ndx) ≠ (comp‘ndx) |
| 13 | 4nn 12270 | . . . . 5 ⊢ 4 ∈ ℕ | |
| 14 | 1lt4 12363 | . . . . 5 ⊢ 1 < 4 | |
| 15 | 1, 1, 13, 14 | declt 12683 | . . . 4 ⊢ ;11 < ;14 |
| 16 | 4, 15 | ltneii 11293 | . . 3 ⊢ ;11 ≠ ;14 |
| 17 | homndx 17380 | . . . 4 ⊢ (Hom ‘ndx) = ;14 | |
| 18 | 9, 17 | neeq12i 2992 | . . 3 ⊢ ((oc‘ndx) ≠ (Hom ‘ndx) ↔ ;11 ≠ ;14) |
| 19 | 16, 18 | mpbir 231 | . 2 ⊢ (oc‘ndx) ≠ (Hom ‘ndx) |
| 20 | 12, 19 | pm3.2i 470 | 1 ⊢ ((oc‘ndx) ≠ (comp‘ndx) ∧ (oc‘ndx) ≠ (Hom ‘ndx)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ≠ wne 2926 ‘cfv 6513 1c1 11075 4c4 12244 5c5 12245 ;cdc 12655 ndxcnx 17169 occoc 17234 Hom chom 17237 compcco 17238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-dec 12656 df-slot 17158 df-ndx 17170 df-ocomp 17247 df-hom 17250 df-cco 17251 |
| This theorem is referenced by: prstcocval 49536 |
| Copyright terms: Public domain | W3C validator |