![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slotsdifocndx | Structured version Visualization version GIF version |
Description: The index of the slot for the orthocomplementation is not the index of other slots. Formerly part of proof for prstcocval 48263. (Contributed by AV, 12-Nov-2024.) |
Ref | Expression |
---|---|
slotsdifocndx | ⊢ ((oc‘ndx) ≠ (comp‘ndx) ∧ (oc‘ndx) ≠ (Hom ‘ndx)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 12521 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
2 | 1nn 12256 | . . . . . 6 ⊢ 1 ∈ ℕ | |
3 | 1, 2 | decnncl 12730 | . . . . 5 ⊢ ;11 ∈ ℕ |
4 | 3 | nnrei 12254 | . . . 4 ⊢ ;11 ∈ ℝ |
5 | 5nn 12331 | . . . . 5 ⊢ 5 ∈ ℕ | |
6 | 1lt5 12425 | . . . . 5 ⊢ 1 < 5 | |
7 | 1, 1, 5, 6 | declt 12738 | . . . 4 ⊢ ;11 < ;15 |
8 | 4, 7 | ltneii 11359 | . . 3 ⊢ ;11 ≠ ;15 |
9 | ocndx 17365 | . . . 4 ⊢ (oc‘ndx) = ;11 | |
10 | ccondx 17397 | . . . 4 ⊢ (comp‘ndx) = ;15 | |
11 | 9, 10 | neeq12i 2996 | . . 3 ⊢ ((oc‘ndx) ≠ (comp‘ndx) ↔ ;11 ≠ ;15) |
12 | 8, 11 | mpbir 230 | . 2 ⊢ (oc‘ndx) ≠ (comp‘ndx) |
13 | 4nn 12328 | . . . . 5 ⊢ 4 ∈ ℕ | |
14 | 1lt4 12421 | . . . . 5 ⊢ 1 < 4 | |
15 | 1, 1, 13, 14 | declt 12738 | . . . 4 ⊢ ;11 < ;14 |
16 | 4, 15 | ltneii 11359 | . . 3 ⊢ ;11 ≠ ;14 |
17 | homndx 17395 | . . . 4 ⊢ (Hom ‘ndx) = ;14 | |
18 | 9, 17 | neeq12i 2996 | . . 3 ⊢ ((oc‘ndx) ≠ (Hom ‘ndx) ↔ ;11 ≠ ;14) |
19 | 16, 18 | mpbir 230 | . 2 ⊢ (oc‘ndx) ≠ (Hom ‘ndx) |
20 | 12, 19 | pm3.2i 469 | 1 ⊢ ((oc‘ndx) ≠ (comp‘ndx) ∧ (oc‘ndx) ≠ (Hom ‘ndx)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 ≠ wne 2929 ‘cfv 6549 1c1 11141 4c4 12302 5c5 12303 ;cdc 12710 ndxcnx 17165 occoc 17244 Hom chom 17247 compcco 17248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-dec 12711 df-slot 17154 df-ndx 17166 df-ocomp 17257 df-hom 17260 df-cco 17261 |
This theorem is referenced by: prstcocval 48263 |
Copyright terms: Public domain | W3C validator |