| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1lt4 | Structured version Visualization version GIF version | ||
| Description: 1 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 1lt4 | ⊢ 1 < 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2 12291 | . 2 ⊢ 1 < 2 | |
| 2 | 2lt4 12295 | . 2 ⊢ 2 < 4 | |
| 3 | 1re 11112 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2re 12199 | . . 3 ⊢ 2 ∈ ℝ | |
| 5 | 4re 12209 | . . 3 ⊢ 4 ∈ ℝ | |
| 6 | 3, 4, 5 | lttri 11239 | . 2 ⊢ ((1 < 2 ∧ 2 < 4) → 1 < 4) |
| 7 | 1, 2, 6 | mp2an 692 | 1 ⊢ 1 < 4 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5089 1c1 11007 < clt 11146 2c2 12180 4c4 12182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-2 12188 df-3 12189 df-4 12190 |
| This theorem is referenced by: 1lt5 12300 fldiv4p1lem1div2 13739 fldiv4lem1div2 13741 flodddiv4 16326 8nprm 17023 starvndxnbasendx 17208 slotsdifocndx 17321 m1lgs 27326 2lgslem3a 27334 2lgslem3c 27336 addsq2nreurex 27382 pntibndlem1 27527 usgrexmplef 29237 upgr4cycl4dv4e 30165 lcmineqlem 42093 aks4d1p1p7 42115 aks4d1p1p5 42116 4fppr1 47774 nnsum4primeseven 47839 nnsum4primesevenALTV 47840 tgblthelfgott 47854 usgrexmpl1lem 48060 usgrexmpl2lem 48065 usgrexmpl2nb1 48071 usgrexmpl2nb4 48074 usgrexmpl2trifr 48076 gpgprismgr4cycllem7 48140 gpgprismgr4cycllem10 48143 |
| Copyright terms: Public domain | W3C validator |