| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1lt4 | Structured version Visualization version GIF version | ||
| Description: 1 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 1lt4 | ⊢ 1 < 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2 12359 | . 2 ⊢ 1 < 2 | |
| 2 | 2lt4 12363 | . 2 ⊢ 2 < 4 | |
| 3 | 1re 11181 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2re 12267 | . . 3 ⊢ 2 ∈ ℝ | |
| 5 | 4re 12277 | . . 3 ⊢ 4 ∈ ℝ | |
| 6 | 3, 4, 5 | lttri 11307 | . 2 ⊢ ((1 < 2 ∧ 2 < 4) → 1 < 4) |
| 7 | 1, 2, 6 | mp2an 692 | 1 ⊢ 1 < 4 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5110 1c1 11076 < clt 11215 2c2 12248 4c4 12250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-2 12256 df-3 12257 df-4 12258 |
| This theorem is referenced by: 1lt5 12368 fldiv4p1lem1div2 13804 fldiv4lem1div2 13806 flodddiv4 16392 8nprm 17089 starvndxnbasendx 17274 slotsdifocndx 17387 m1lgs 27306 2lgslem3a 27314 2lgslem3c 27316 addsq2nreurex 27362 pntibndlem1 27507 usgrexmplef 29193 upgr4cycl4dv4e 30121 lcmineqlem 42047 aks4d1p1p7 42069 aks4d1p1p5 42070 4fppr1 47740 nnsum4primeseven 47805 nnsum4primesevenALTV 47806 tgblthelfgott 47820 usgrexmpl1lem 48016 usgrexmpl2lem 48021 usgrexmpl2nb1 48027 usgrexmpl2nb4 48030 usgrexmpl2trifr 48032 gpgprismgr4cycllem7 48095 gpgprismgr4cycllem10 48098 |
| Copyright terms: Public domain | W3C validator |