![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1pneg1e0 | Structured version Visualization version GIF version |
Description: 1 + -1 is 0. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
1pneg1e0 | ⊢ (1 + -1) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10330 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | negidi 10692 | 1 ⊢ (1 + -1) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 (class class class)co 6922 0cc0 10272 1c1 10273 + caddc 10275 -cneg 10607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-po 5274 df-so 5275 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-ltxr 10416 df-sub 10608 df-neg 10609 |
This theorem is referenced by: xov1plusxeqvd 12635 bernneq 13309 n2dvdsm1 15498 bitsfzo 15563 plydivlem1 24485 iaa 24517 dvradcnv 24612 eulerid 24664 musum 25369 ppiub 25381 lgsdir2lem3 25504 m1lgs 25565 axlowdimlem13 26303 vcm 28003 nvge0 28100 hvsubid 28455 subfacval2 31768 dvradcnv2 39502 binomcxplemdvbinom 39508 binomcxplemnotnn0 39511 dirkertrigeqlem1 41242 fourierdlem24 41275 fourierswlem 41374 |
Copyright terms: Public domain | W3C validator |