| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0m0e0 | Structured version Visualization version GIF version | ||
| Description: 0 minus 0 equals 0. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0m0e0 | ⊢ (0 − 0) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 11232 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | 1 | subidi 11559 | 1 ⊢ (0 − 0) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7410 0cc0 11134 − cmin 11471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-sub 11473 |
| This theorem is referenced by: discr 14263 revs1 14788 fsumparts 15827 binom 15851 arisum2 15882 0fallfac 16058 binomfallfac 16062 fsumcube 16081 phiprmpw 16800 prmreclem4 16944 srgbinom 20196 mhpmulcl 22092 rrxdstprj1 25366 ovolicc1 25474 itgrevallem1 25753 coeeulem 26186 plydiveu 26263 pilem2 26419 dcubic 26813 harmonicbnd3 26975 lgamgulmlem2 26997 logexprlim 27193 bposlem1 27252 bposlem2 27253 rplogsumlem2 27453 pntrsumo1 27533 pntrlog2bndlem4 27548 pntrlog2bndlem5 27549 pntleml 27579 axlowdimlem6 28931 0cnfn 31966 lnopeq0i 31993 sgnneg 32817 2sqr3minply 33819 ballotlemfval0 34533 ballotlem4 34536 ballotlemi1 34540 fwddifn0 36187 mblfinlem2 37687 itg2addnclem 37700 itg2addnclem3 37702 lcmineqlem10 42056 acongeq 42974 mpaaeu 43141 dvnmul 45939 itgsinexplem1 45950 |
| Copyright terms: Public domain | W3C validator |