MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0m0e0 Structured version   Visualization version   GIF version

Theorem 0m0e0 12413
Description: 0 minus 0 equals 0. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
0m0e0 (0 − 0) = 0

Proof of Theorem 0m0e0
StepHypRef Expression
1 0cn 11282 . 2 0 ∈ ℂ
21subidi 11607 1 (0 − 0) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  (class class class)co 7448  0cc0 11184  cmin 11520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-sub 11522
This theorem is referenced by:  discr  14289  revs1  14813  fsumparts  15854  binom  15878  arisum2  15909  0fallfac  16085  binomfallfac  16089  fsumcube  16108  phiprmpw  16823  prmreclem4  16966  srgbinom  20258  mhpmulcl  22176  rrxdstprj1  25462  ovolicc1  25570  itgrevallem1  25850  coeeulem  26283  plydiveu  26358  pilem2  26514  dcubic  26907  harmonicbnd3  27069  lgamgulmlem2  27091  logexprlim  27287  bposlem1  27346  bposlem2  27347  rplogsumlem2  27547  pntrsumo1  27627  pntrlog2bndlem4  27642  pntrlog2bndlem5  27643  pntleml  27673  axlowdimlem6  28980  0cnfn  32012  lnopeq0i  32039  2sqr3minply  33738  ballotlemfval0  34460  ballotlem4  34463  ballotlemi1  34467  sgnneg  34505  fwddifn0  36128  mblfinlem2  37618  itg2addnclem  37631  itg2addnclem3  37633  lcmineqlem10  41995  acongeq  42940  mpaaeu  43107  dvnmul  45864  itgsinexplem1  45875
  Copyright terms: Public domain W3C validator