MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0m0e0 Structured version   Visualization version   GIF version

Theorem 0m0e0 12386
Description: 0 minus 0 equals 0. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
0m0e0 (0 − 0) = 0

Proof of Theorem 0m0e0
StepHypRef Expression
1 0cn 11253 . 2 0 ∈ ℂ
21subidi 11580 1 (0 − 0) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7431  0cc0 11155  cmin 11492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-sub 11494
This theorem is referenced by:  discr  14279  revs1  14803  fsumparts  15842  binom  15866  arisum2  15897  0fallfac  16073  binomfallfac  16077  fsumcube  16096  phiprmpw  16813  prmreclem4  16957  srgbinom  20228  mhpmulcl  22153  rrxdstprj1  25443  ovolicc1  25551  itgrevallem1  25830  coeeulem  26263  plydiveu  26340  pilem2  26496  dcubic  26889  harmonicbnd3  27051  lgamgulmlem2  27073  logexprlim  27269  bposlem1  27328  bposlem2  27329  rplogsumlem2  27529  pntrsumo1  27609  pntrlog2bndlem4  27624  pntrlog2bndlem5  27625  pntleml  27655  axlowdimlem6  28962  0cnfn  31999  lnopeq0i  32026  2sqr3minply  33791  ballotlemfval0  34498  ballotlem4  34501  ballotlemi1  34505  sgnneg  34543  fwddifn0  36165  mblfinlem2  37665  itg2addnclem  37678  itg2addnclem3  37680  lcmineqlem10  42039  acongeq  42995  mpaaeu  43162  dvnmul  45958  itgsinexplem1  45969
  Copyright terms: Public domain W3C validator