MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswsymballbi Structured version   Visualization version   GIF version

Theorem repswsymballbi 14815
Description: A word is a "repeated symbol word" iff each of its symbols equals the first symbol of the word. (Contributed by AV, 10-Nov-2018.)
Assertion
Ref Expression
repswsymballbi (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
Distinct variable group:   𝑖,𝑊
Allowed substitution hint:   𝑉(𝑖)

Proof of Theorem repswsymballbi
StepHypRef Expression
1 fveq2 6907 . . . . 5 (𝑊 = ∅ → (♯‘𝑊) = (♯‘∅))
2 hash0 14403 . . . . 5 (♯‘∅) = 0
31, 2eqtrdi 2791 . . . 4 (𝑊 = ∅ → (♯‘𝑊) = 0)
4 fvex 6920 . . . . . . . 8 (𝑊‘0) ∈ V
5 repsw0 14812 . . . . . . . 8 ((𝑊‘0) ∈ V → ((𝑊‘0) repeatS 0) = ∅)
64, 5ax-mp 5 . . . . . . 7 ((𝑊‘0) repeatS 0) = ∅
76eqcomi 2744 . . . . . 6 ∅ = ((𝑊‘0) repeatS 0)
8 simpr 484 . . . . . 6 (((♯‘𝑊) = 0 ∧ 𝑊 = ∅) → 𝑊 = ∅)
9 oveq2 7439 . . . . . . 7 ((♯‘𝑊) = 0 → ((𝑊‘0) repeatS (♯‘𝑊)) = ((𝑊‘0) repeatS 0))
109adantr 480 . . . . . 6 (((♯‘𝑊) = 0 ∧ 𝑊 = ∅) → ((𝑊‘0) repeatS (♯‘𝑊)) = ((𝑊‘0) repeatS 0))
117, 8, 103eqtr4a 2801 . . . . 5 (((♯‘𝑊) = 0 ∧ 𝑊 = ∅) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))
12 ral0 4519 . . . . . . 7 𝑖 ∈ ∅ (𝑊𝑖) = (𝑊‘0)
13 oveq2 7439 . . . . . . . . 9 ((♯‘𝑊) = 0 → (0..^(♯‘𝑊)) = (0..^0))
14 fzo0 13720 . . . . . . . . 9 (0..^0) = ∅
1513, 14eqtrdi 2791 . . . . . . . 8 ((♯‘𝑊) = 0 → (0..^(♯‘𝑊)) = ∅)
1615raleqdv 3324 . . . . . . 7 ((♯‘𝑊) = 0 → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) ↔ ∀𝑖 ∈ ∅ (𝑊𝑖) = (𝑊‘0)))
1712, 16mpbiri 258 . . . . . 6 ((♯‘𝑊) = 0 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
1817adantr 480 . . . . 5 (((♯‘𝑊) = 0 ∧ 𝑊 = ∅) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
1911, 182thd 265 . . . 4 (((♯‘𝑊) = 0 ∧ 𝑊 = ∅) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
203, 19mpancom 688 . . 3 (𝑊 = ∅ → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
2120a1d 25 . 2 (𝑊 = ∅ → (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
22 df-3an 1088 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)) ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
2322a1i 11 . . . 4 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)) ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
24 fstwrdne 14590 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊‘0) ∈ 𝑉)
2524ancoms 458 . . . . 5 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (𝑊‘0) ∈ 𝑉)
26 lencl 14568 . . . . . 6 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
2726adantl 481 . . . . 5 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (♯‘𝑊) ∈ ℕ0)
28 repsdf2 14813 . . . . 5 (((𝑊‘0) ∈ 𝑉 ∧ (♯‘𝑊) ∈ ℕ0) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
2925, 27, 28syl2anc 584 . . . 4 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
30 simpr 484 . . . . . 6 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → 𝑊 ∈ Word 𝑉)
31 eqidd 2736 . . . . . 6 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (♯‘𝑊) = (♯‘𝑊))
3230, 31jca 511 . . . . 5 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)))
3332biantrurd 532 . . . 4 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
3423, 29, 333bitr4d 311 . . 3 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
3534ex 412 . 2 (𝑊 ≠ ∅ → (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
3621, 35pm2.61ine 3023 1 (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  Vcvv 3478  c0 4339  cfv 6563  (class class class)co 7431  0cc0 11153  0cn0 12524  ..^cfzo 13691  chash 14366  Word cword 14549   repeatS creps 14803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-reps 14804
This theorem is referenced by:  cshw1repsw  14858  cshwsidrepsw  17128  cshwshashlem1  17130  cshwshash  17139
  Copyright terms: Public domain W3C validator