MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswsymballbi Structured version   Visualization version   GIF version

Theorem repswsymballbi 14142
Description: A word is a "repeated symbol word" iff each of its symbols equals the first symbol of the word. (Contributed by AV, 10-Nov-2018.)
Assertion
Ref Expression
repswsymballbi (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
Distinct variable group:   𝑖,𝑊
Allowed substitution hint:   𝑉(𝑖)

Proof of Theorem repswsymballbi
StepHypRef Expression
1 fveq2 6670 . . . . 5 (𝑊 = ∅ → (♯‘𝑊) = (♯‘∅))
2 hash0 13729 . . . . 5 (♯‘∅) = 0
31, 2syl6eq 2872 . . . 4 (𝑊 = ∅ → (♯‘𝑊) = 0)
4 fvex 6683 . . . . . . . 8 (𝑊‘0) ∈ V
5 repsw0 14139 . . . . . . . 8 ((𝑊‘0) ∈ V → ((𝑊‘0) repeatS 0) = ∅)
64, 5ax-mp 5 . . . . . . 7 ((𝑊‘0) repeatS 0) = ∅
76eqcomi 2830 . . . . . 6 ∅ = ((𝑊‘0) repeatS 0)
8 simpr 487 . . . . . 6 (((♯‘𝑊) = 0 ∧ 𝑊 = ∅) → 𝑊 = ∅)
9 oveq2 7164 . . . . . . 7 ((♯‘𝑊) = 0 → ((𝑊‘0) repeatS (♯‘𝑊)) = ((𝑊‘0) repeatS 0))
109adantr 483 . . . . . 6 (((♯‘𝑊) = 0 ∧ 𝑊 = ∅) → ((𝑊‘0) repeatS (♯‘𝑊)) = ((𝑊‘0) repeatS 0))
117, 8, 103eqtr4a 2882 . . . . 5 (((♯‘𝑊) = 0 ∧ 𝑊 = ∅) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))
12 ral0 4456 . . . . . . 7 𝑖 ∈ ∅ (𝑊𝑖) = (𝑊‘0)
13 oveq2 7164 . . . . . . . . 9 ((♯‘𝑊) = 0 → (0..^(♯‘𝑊)) = (0..^0))
14 fzo0 13062 . . . . . . . . 9 (0..^0) = ∅
1513, 14syl6eq 2872 . . . . . . . 8 ((♯‘𝑊) = 0 → (0..^(♯‘𝑊)) = ∅)
1615raleqdv 3415 . . . . . . 7 ((♯‘𝑊) = 0 → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) ↔ ∀𝑖 ∈ ∅ (𝑊𝑖) = (𝑊‘0)))
1712, 16mpbiri 260 . . . . . 6 ((♯‘𝑊) = 0 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
1817adantr 483 . . . . 5 (((♯‘𝑊) = 0 ∧ 𝑊 = ∅) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
1911, 182thd 267 . . . 4 (((♯‘𝑊) = 0 ∧ 𝑊 = ∅) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
203, 19mpancom 686 . . 3 (𝑊 = ∅ → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
2120a1d 25 . 2 (𝑊 = ∅ → (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
22 df-3an 1085 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)) ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
2322a1i 11 . . . 4 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)) ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
24 fstwrdne 13907 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊‘0) ∈ 𝑉)
2524ancoms 461 . . . . 5 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (𝑊‘0) ∈ 𝑉)
26 lencl 13883 . . . . . 6 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
2726adantl 484 . . . . 5 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (♯‘𝑊) ∈ ℕ0)
28 repsdf2 14140 . . . . 5 (((𝑊‘0) ∈ 𝑉 ∧ (♯‘𝑊) ∈ ℕ0) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
2925, 27, 28syl2anc 586 . . . 4 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
30 simpr 487 . . . . . 6 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → 𝑊 ∈ Word 𝑉)
31 eqidd 2822 . . . . . 6 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (♯‘𝑊) = (♯‘𝑊))
3230, 31jca 514 . . . . 5 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)))
3332biantrurd 535 . . . 4 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
3423, 29, 333bitr4d 313 . . 3 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
3534ex 415 . 2 (𝑊 ≠ ∅ → (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
3621, 35pm2.61ine 3100 1 (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  Vcvv 3494  c0 4291  cfv 6355  (class class class)co 7156  0cc0 10537  0cn0 11898  ..^cfzo 13034  chash 13691  Word cword 13862   repeatS creps 14130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-reps 14131
This theorem is referenced by:  cshw1repsw  14185  cshwsidrepsw  16427  cshwshashlem1  16429  cshwshash  16438
  Copyright terms: Public domain W3C validator