MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswsymballbi Structured version   Visualization version   GIF version

Theorem repswsymballbi 14798
Description: A word is a "repeated symbol word" iff each of its symbols equals the first symbol of the word. (Contributed by AV, 10-Nov-2018.)
Assertion
Ref Expression
repswsymballbi (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
Distinct variable group:   𝑖,𝑊
Allowed substitution hint:   𝑉(𝑖)

Proof of Theorem repswsymballbi
StepHypRef Expression
1 fveq2 6876 . . . . 5 (𝑊 = ∅ → (♯‘𝑊) = (♯‘∅))
2 hash0 14385 . . . . 5 (♯‘∅) = 0
31, 2eqtrdi 2786 . . . 4 (𝑊 = ∅ → (♯‘𝑊) = 0)
4 fvex 6889 . . . . . . . 8 (𝑊‘0) ∈ V
5 repsw0 14795 . . . . . . . 8 ((𝑊‘0) ∈ V → ((𝑊‘0) repeatS 0) = ∅)
64, 5ax-mp 5 . . . . . . 7 ((𝑊‘0) repeatS 0) = ∅
76eqcomi 2744 . . . . . 6 ∅ = ((𝑊‘0) repeatS 0)
8 simpr 484 . . . . . 6 (((♯‘𝑊) = 0 ∧ 𝑊 = ∅) → 𝑊 = ∅)
9 oveq2 7413 . . . . . . 7 ((♯‘𝑊) = 0 → ((𝑊‘0) repeatS (♯‘𝑊)) = ((𝑊‘0) repeatS 0))
109adantr 480 . . . . . 6 (((♯‘𝑊) = 0 ∧ 𝑊 = ∅) → ((𝑊‘0) repeatS (♯‘𝑊)) = ((𝑊‘0) repeatS 0))
117, 8, 103eqtr4a 2796 . . . . 5 (((♯‘𝑊) = 0 ∧ 𝑊 = ∅) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))
12 ral0 4488 . . . . . . 7 𝑖 ∈ ∅ (𝑊𝑖) = (𝑊‘0)
13 oveq2 7413 . . . . . . . . 9 ((♯‘𝑊) = 0 → (0..^(♯‘𝑊)) = (0..^0))
14 fzo0 13700 . . . . . . . . 9 (0..^0) = ∅
1513, 14eqtrdi 2786 . . . . . . . 8 ((♯‘𝑊) = 0 → (0..^(♯‘𝑊)) = ∅)
1615raleqdv 3305 . . . . . . 7 ((♯‘𝑊) = 0 → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) ↔ ∀𝑖 ∈ ∅ (𝑊𝑖) = (𝑊‘0)))
1712, 16mpbiri 258 . . . . . 6 ((♯‘𝑊) = 0 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
1817adantr 480 . . . . 5 (((♯‘𝑊) = 0 ∧ 𝑊 = ∅) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
1911, 182thd 265 . . . 4 (((♯‘𝑊) = 0 ∧ 𝑊 = ∅) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
203, 19mpancom 688 . . 3 (𝑊 = ∅ → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
2120a1d 25 . 2 (𝑊 = ∅ → (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
22 df-3an 1088 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)) ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
2322a1i 11 . . . 4 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)) ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
24 fstwrdne 14573 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊‘0) ∈ 𝑉)
2524ancoms 458 . . . . 5 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (𝑊‘0) ∈ 𝑉)
26 lencl 14551 . . . . . 6 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
2726adantl 481 . . . . 5 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (♯‘𝑊) ∈ ℕ0)
28 repsdf2 14796 . . . . 5 (((𝑊‘0) ∈ 𝑉 ∧ (♯‘𝑊) ∈ ℕ0) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
2925, 27, 28syl2anc 584 . . . 4 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
30 simpr 484 . . . . . 6 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → 𝑊 ∈ Word 𝑉)
31 eqidd 2736 . . . . . 6 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (♯‘𝑊) = (♯‘𝑊))
3230, 31jca 511 . . . . 5 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)))
3332biantrurd 532 . . . 4 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
3423, 29, 333bitr4d 311 . . 3 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
3534ex 412 . 2 (𝑊 ≠ ∅ → (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
3621, 35pm2.61ine 3015 1 (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  Vcvv 3459  c0 4308  cfv 6531  (class class class)co 7405  0cc0 11129  0cn0 12501  ..^cfzo 13671  chash 14348  Word cword 14531   repeatS creps 14786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-reps 14787
This theorem is referenced by:  cshw1repsw  14841  cshwsidrepsw  17113  cshwshashlem1  17115  cshwshash  17124
  Copyright terms: Public domain W3C validator