MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcnp3 Structured version   Visualization version   GIF version

Theorem rlimcnp3 26439
Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function 𝑆(𝑦) = 𝑅(1 / 𝑦) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypotheses
Ref Expression
rlimcnp3.c (𝜑𝐶 ∈ ℂ)
rlimcnp3.r ((𝜑𝑦 ∈ ℝ+) → 𝑆 ∈ ℂ)
rlimcnp3.s (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅)
rlimcnp3.j 𝐽 = (TopOpen‘ℂfld)
rlimcnp3.k 𝐾 = (𝐽t (0[,)+∞))
Assertion
Ref Expression
rlimcnp3 (𝜑 → ((𝑦 ∈ ℝ+𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)))
Distinct variable groups:   𝑥,𝑦,𝐶   𝜑,𝑥,𝑦   𝑦,𝑅   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem rlimcnp3
StepHypRef Expression
1 ssidd 4003 . 2 (𝜑 → (0[,)+∞) ⊆ (0[,)+∞))
2 0e0icopnf 13422 . . 3 0 ∈ (0[,)+∞)
32a1i 11 . 2 (𝜑 → 0 ∈ (0[,)+∞))
4 rpssre 12968 . . 3 + ⊆ ℝ
54a1i 11 . 2 (𝜑 → ℝ+ ⊆ ℝ)
6 rlimcnp3.c . 2 (𝜑𝐶 ∈ ℂ)
7 rlimcnp3.r . 2 ((𝜑𝑦 ∈ ℝ+) → 𝑆 ∈ ℂ)
8 simpr 486 . . 3 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
9 rpreccl 12987 . . . . . 6 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ+)
109adantl 483 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ ℝ+)
1110rpred 13003 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ ℝ)
1210rpge0d 13007 . . . 4 ((𝜑𝑦 ∈ ℝ+) → 0 ≤ (1 / 𝑦))
13 elrege0 13418 . . . 4 ((1 / 𝑦) ∈ (0[,)+∞) ↔ ((1 / 𝑦) ∈ ℝ ∧ 0 ≤ (1 / 𝑦)))
1411, 12, 13sylanbrc 584 . . 3 ((𝜑𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ (0[,)+∞))
158, 142thd 265 . 2 ((𝜑𝑦 ∈ ℝ+) → (𝑦 ∈ ℝ+ ↔ (1 / 𝑦) ∈ (0[,)+∞)))
16 rlimcnp3.s . 2 (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅)
17 rlimcnp3.j . 2 𝐽 = (TopOpen‘ℂfld)
18 rlimcnp3.k . 2 𝐾 = (𝐽t (0[,)+∞))
191, 3, 5, 6, 7, 15, 16, 17, 18rlimcnp2 26438 1 (𝜑 → ((𝑦 ∈ ℝ+𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wss 3946  ifcif 4524   class class class wbr 5144  cmpt 5227  cfv 6535  (class class class)co 7396  cc 11095  cr 11096  0cc0 11097  1c1 11098  +∞cpnf 11232  cle 11236   / cdiv 11858  +crp 12961  [,)cico 13313  𝑟 crli 15416  t crest 17353  TopOpenctopn 17354  fldccnfld 20918   CnP ccnp 22698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174  ax-pre-sup 11175
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-1st 7962  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-er 8691  df-map 8810  df-pm 8811  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931  df-sup 9424  df-inf 9425  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-div 11859  df-nn 12200  df-2 12262  df-3 12263  df-4 12264  df-5 12265  df-6 12266  df-7 12267  df-8 12268  df-9 12269  df-n0 12460  df-z 12546  df-dec 12665  df-uz 12810  df-q 12920  df-rp 12962  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13315  df-ico 13317  df-fz 13472  df-seq 13954  df-exp 14015  df-cj 15033  df-re 15034  df-im 15035  df-sqrt 15169  df-abs 15170  df-rlim 15420  df-struct 17067  df-slot 17102  df-ndx 17114  df-base 17132  df-plusg 17197  df-mulr 17198  df-starv 17199  df-tset 17203  df-ple 17204  df-ds 17206  df-unif 17207  df-rest 17355  df-topn 17356  df-topgen 17376  df-psmet 20910  df-xmet 20911  df-met 20912  df-bl 20913  df-mopn 20914  df-cnfld 20919  df-top 22365  df-topon 22382  df-bases 22418  df-cnp 22701
This theorem is referenced by:  efrlim  26441
  Copyright terms: Public domain W3C validator