MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcnp3 Structured version   Visualization version   GIF version

Theorem rlimcnp3 26853
Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function 𝑆(𝑦) = 𝑅(1 / 𝑦) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypotheses
Ref Expression
rlimcnp3.c (𝜑𝐶 ∈ ℂ)
rlimcnp3.r ((𝜑𝑦 ∈ ℝ+) → 𝑆 ∈ ℂ)
rlimcnp3.s (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅)
rlimcnp3.j 𝐽 = (TopOpen‘ℂfld)
rlimcnp3.k 𝐾 = (𝐽t (0[,)+∞))
Assertion
Ref Expression
rlimcnp3 (𝜑 → ((𝑦 ∈ ℝ+𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)))
Distinct variable groups:   𝑥,𝑦,𝐶   𝜑,𝑥,𝑦   𝑦,𝑅   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem rlimcnp3
StepHypRef Expression
1 ssidd 3967 . 2 (𝜑 → (0[,)+∞) ⊆ (0[,)+∞))
2 0e0icopnf 13395 . . 3 0 ∈ (0[,)+∞)
32a1i 11 . 2 (𝜑 → 0 ∈ (0[,)+∞))
4 rpssre 12935 . . 3 + ⊆ ℝ
54a1i 11 . 2 (𝜑 → ℝ+ ⊆ ℝ)
6 rlimcnp3.c . 2 (𝜑𝐶 ∈ ℂ)
7 rlimcnp3.r . 2 ((𝜑𝑦 ∈ ℝ+) → 𝑆 ∈ ℂ)
8 simpr 484 . . 3 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
9 rpreccl 12955 . . . . . 6 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ+)
109adantl 481 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ ℝ+)
1110rpred 12971 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ ℝ)
1210rpge0d 12975 . . . 4 ((𝜑𝑦 ∈ ℝ+) → 0 ≤ (1 / 𝑦))
13 elrege0 13391 . . . 4 ((1 / 𝑦) ∈ (0[,)+∞) ↔ ((1 / 𝑦) ∈ ℝ ∧ 0 ≤ (1 / 𝑦)))
1411, 12, 13sylanbrc 583 . . 3 ((𝜑𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ (0[,)+∞))
158, 142thd 265 . 2 ((𝜑𝑦 ∈ ℝ+) → (𝑦 ∈ ℝ+ ↔ (1 / 𝑦) ∈ (0[,)+∞)))
16 rlimcnp3.s . 2 (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅)
17 rlimcnp3.j . 2 𝐽 = (TopOpen‘ℂfld)
18 rlimcnp3.k . 2 𝐾 = (𝐽t (0[,)+∞))
191, 3, 5, 6, 7, 15, 16, 17, 18rlimcnp2 26852 1 (𝜑 → ((𝑦 ∈ ℝ+𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3911  ifcif 4484   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045  +∞cpnf 11181  cle 11185   / cdiv 11811  +crp 12927  [,)cico 13284  𝑟 crli 15427  t crest 17359  TopOpenctopn 17360  fldccnfld 21240   CnP ccnp 23088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-fz 13445  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-rlim 15431  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-rest 17361  df-topn 17362  df-topgen 17382  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-cnfld 21241  df-top 22757  df-topon 22774  df-bases 22809  df-cnp 23091
This theorem is referenced by:  efrlim  26855  efrlimOLD  26856
  Copyright terms: Public domain W3C validator