| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimcnp3 | Structured version Visualization version GIF version | ||
| Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function 𝑆(𝑦) = 𝑅(1 / 𝑦) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| Ref | Expression |
|---|---|
| rlimcnp3.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| rlimcnp3.r | ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝑆 ∈ ℂ) |
| rlimcnp3.s | ⊢ (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅) |
| rlimcnp3.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| rlimcnp3.k | ⊢ 𝐾 = (𝐽 ↾t (0[,)+∞)) |
| Ref | Expression |
|---|---|
| rlimcnp3 | ⊢ (𝜑 → ((𝑦 ∈ ℝ+ ↦ 𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssidd 3987 | . 2 ⊢ (𝜑 → (0[,)+∞) ⊆ (0[,)+∞)) | |
| 2 | 0e0icopnf 13480 | . . 3 ⊢ 0 ∈ (0[,)+∞) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ (0[,)+∞)) |
| 4 | rpssre 13021 | . . 3 ⊢ ℝ+ ⊆ ℝ | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → ℝ+ ⊆ ℝ) |
| 6 | rlimcnp3.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 7 | rlimcnp3.r | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝑆 ∈ ℂ) | |
| 8 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+) | |
| 9 | rpreccl 13040 | . . . . . 6 ⊢ (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ+) | |
| 10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ ℝ+) |
| 11 | 10 | rpred 13056 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ ℝ) |
| 12 | 10 | rpge0d 13060 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 0 ≤ (1 / 𝑦)) |
| 13 | elrege0 13476 | . . . 4 ⊢ ((1 / 𝑦) ∈ (0[,)+∞) ↔ ((1 / 𝑦) ∈ ℝ ∧ 0 ≤ (1 / 𝑦))) | |
| 14 | 11, 12, 13 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ (0[,)+∞)) |
| 15 | 8, 14 | 2thd 265 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (𝑦 ∈ ℝ+ ↔ (1 / 𝑦) ∈ (0[,)+∞))) |
| 16 | rlimcnp3.s | . 2 ⊢ (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅) | |
| 17 | rlimcnp3.j | . 2 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 18 | rlimcnp3.k | . 2 ⊢ 𝐾 = (𝐽 ↾t (0[,)+∞)) | |
| 19 | 1, 3, 5, 6, 7, 15, 16, 17, 18 | rlimcnp2 26933 | 1 ⊢ (𝜑 → ((𝑦 ∈ ℝ+ ↦ 𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ifcif 4505 class class class wbr 5124 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 ℝcr 11133 0cc0 11134 1c1 11135 +∞cpnf 11271 ≤ cle 11275 / cdiv 11899 ℝ+crp 13013 [,)cico 13369 ⇝𝑟 crli 15506 ↾t crest 17439 TopOpenctopn 17440 ℂfldccnfld 21320 CnP ccnp 23168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ioo 13371 df-ico 13373 df-fz 13530 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-rlim 15510 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-mulr 17290 df-starv 17291 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-rest 17441 df-topn 17442 df-topgen 17462 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-cnfld 21321 df-top 22837 df-topon 22854 df-bases 22889 df-cnp 23171 |
| This theorem is referenced by: efrlim 26936 efrlimOLD 26937 |
| Copyright terms: Public domain | W3C validator |