| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimcnp3 | Structured version Visualization version GIF version | ||
| Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function 𝑆(𝑦) = 𝑅(1 / 𝑦) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| Ref | Expression |
|---|---|
| rlimcnp3.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| rlimcnp3.r | ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝑆 ∈ ℂ) |
| rlimcnp3.s | ⊢ (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅) |
| rlimcnp3.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| rlimcnp3.k | ⊢ 𝐾 = (𝐽 ↾t (0[,)+∞)) |
| Ref | Expression |
|---|---|
| rlimcnp3 | ⊢ (𝜑 → ((𝑦 ∈ ℝ+ ↦ 𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssidd 3953 | . 2 ⊢ (𝜑 → (0[,)+∞) ⊆ (0[,)+∞)) | |
| 2 | 0e0icopnf 13358 | . . 3 ⊢ 0 ∈ (0[,)+∞) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ (0[,)+∞)) |
| 4 | rpssre 12898 | . . 3 ⊢ ℝ+ ⊆ ℝ | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → ℝ+ ⊆ ℝ) |
| 6 | rlimcnp3.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 7 | rlimcnp3.r | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝑆 ∈ ℂ) | |
| 8 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+) | |
| 9 | rpreccl 12918 | . . . . . 6 ⊢ (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ+) | |
| 10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ ℝ+) |
| 11 | 10 | rpred 12934 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ ℝ) |
| 12 | 10 | rpge0d 12938 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 0 ≤ (1 / 𝑦)) |
| 13 | elrege0 13354 | . . . 4 ⊢ ((1 / 𝑦) ∈ (0[,)+∞) ↔ ((1 / 𝑦) ∈ ℝ ∧ 0 ≤ (1 / 𝑦))) | |
| 14 | 11, 12, 13 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ (0[,)+∞)) |
| 15 | 8, 14 | 2thd 265 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (𝑦 ∈ ℝ+ ↔ (1 / 𝑦) ∈ (0[,)+∞))) |
| 16 | rlimcnp3.s | . 2 ⊢ (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅) | |
| 17 | rlimcnp3.j | . 2 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 18 | rlimcnp3.k | . 2 ⊢ 𝐾 = (𝐽 ↾t (0[,)+∞)) | |
| 19 | 1, 3, 5, 6, 7, 15, 16, 17, 18 | rlimcnp2 26903 | 1 ⊢ (𝜑 → ((𝑦 ∈ ℝ+ ↦ 𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ifcif 4472 class class class wbr 5089 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 1c1 11007 +∞cpnf 11143 ≤ cle 11147 / cdiv 11774 ℝ+crp 12890 [,)cico 13247 ⇝𝑟 crli 15392 ↾t crest 17324 TopOpenctopn 17325 ℂfldccnfld 21291 CnP ccnp 23140 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ico 13251 df-fz 13408 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-rlim 15396 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-rest 17326 df-topn 17327 df-topgen 17347 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-cnfld 21292 df-top 22809 df-topon 22826 df-bases 22861 df-cnp 23143 |
| This theorem is referenced by: efrlim 26906 efrlimOLD 26907 |
| Copyright terms: Public domain | W3C validator |