| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimcnp3 | Structured version Visualization version GIF version | ||
| Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function 𝑆(𝑦) = 𝑅(1 / 𝑦) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.) |
| Ref | Expression |
|---|---|
| rlimcnp3.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| rlimcnp3.r | ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝑆 ∈ ℂ) |
| rlimcnp3.s | ⊢ (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅) |
| rlimcnp3.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| rlimcnp3.k | ⊢ 𝐾 = (𝐽 ↾t (0[,)+∞)) |
| Ref | Expression |
|---|---|
| rlimcnp3 | ⊢ (𝜑 → ((𝑦 ∈ ℝ+ ↦ 𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssidd 3987 | . 2 ⊢ (𝜑 → (0[,)+∞) ⊆ (0[,)+∞)) | |
| 2 | 0e0icopnf 13480 | . . 3 ⊢ 0 ∈ (0[,)+∞) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ (0[,)+∞)) |
| 4 | rpssre 13024 | . . 3 ⊢ ℝ+ ⊆ ℝ | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → ℝ+ ⊆ ℝ) |
| 6 | rlimcnp3.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 7 | rlimcnp3.r | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝑆 ∈ ℂ) | |
| 8 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+) | |
| 9 | rpreccl 13043 | . . . . . 6 ⊢ (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ+) | |
| 10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ ℝ+) |
| 11 | 10 | rpred 13059 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ ℝ) |
| 12 | 10 | rpge0d 13063 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 0 ≤ (1 / 𝑦)) |
| 13 | elrege0 13476 | . . . 4 ⊢ ((1 / 𝑦) ∈ (0[,)+∞) ↔ ((1 / 𝑦) ∈ ℝ ∧ 0 ≤ (1 / 𝑦))) | |
| 14 | 11, 12, 13 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ (0[,)+∞)) |
| 15 | 8, 14 | 2thd 265 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (𝑦 ∈ ℝ+ ↔ (1 / 𝑦) ∈ (0[,)+∞))) |
| 16 | rlimcnp3.s | . 2 ⊢ (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅) | |
| 17 | rlimcnp3.j | . 2 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 18 | rlimcnp3.k | . 2 ⊢ 𝐾 = (𝐽 ↾t (0[,)+∞)) | |
| 19 | 1, 3, 5, 6, 7, 15, 16, 17, 18 | rlimcnp2 26946 | 1 ⊢ (𝜑 → ((𝑦 ∈ ℝ+ ↦ 𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⊆ wss 3931 ifcif 4505 class class class wbr 5123 ↦ cmpt 5205 ‘cfv 6541 (class class class)co 7413 ℂcc 11135 ℝcr 11136 0cc0 11137 1c1 11138 +∞cpnf 11274 ≤ cle 11278 / cdiv 11902 ℝ+crp 13016 [,)cico 13371 ⇝𝑟 crli 15504 ↾t crest 17437 TopOpenctopn 17438 ℂfldccnfld 21327 CnP ccnp 23180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-pm 8851 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-q 12973 df-rp 13017 df-xneg 13136 df-xadd 13137 df-xmul 13138 df-ioo 13373 df-ico 13375 df-fz 13530 df-seq 14025 df-exp 14085 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-rlim 15508 df-struct 17167 df-slot 17202 df-ndx 17214 df-base 17231 df-plusg 17287 df-mulr 17288 df-starv 17289 df-tset 17293 df-ple 17294 df-ds 17296 df-unif 17297 df-rest 17439 df-topn 17440 df-topgen 17460 df-psmet 21319 df-xmet 21320 df-met 21321 df-bl 21322 df-mopn 21323 df-cnfld 21328 df-top 22849 df-topon 22866 df-bases 22901 df-cnp 23183 |
| This theorem is referenced by: efrlim 26949 efrlimOLD 26950 |
| Copyright terms: Public domain | W3C validator |