Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  resin4p Structured version   Visualization version   GIF version

Theorem resin4p 15486
 Description: Separate out the first four terms of the infinite series expansion of the sine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
efi4p.1 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
Assertion
Ref Expression
resin4p (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
Distinct variable groups:   𝐴,𝑘,𝑛   𝑘,𝐹
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem resin4p
StepHypRef Expression
1 resinval 15483 . 2 (𝐴 ∈ ℝ → (sin‘𝐴) = (ℑ‘(exp‘(i · 𝐴))))
2 recn 10619 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 efi4p.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
43efi4p 15485 . . . . 5 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
52, 4syl 17 . . . 4 (𝐴 ∈ ℝ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
65fveq2d 6650 . . 3 (𝐴 ∈ ℝ → (ℑ‘(exp‘(i · 𝐴))) = (ℑ‘(((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
7 1re 10633 . . . . . . 7 1 ∈ ℝ
8 resqcl 13489 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ)
98rehalfcld 11875 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴↑2) / 2) ∈ ℝ)
10 resubcl 10942 . . . . . . 7 ((1 ∈ ℝ ∧ ((𝐴↑2) / 2) ∈ ℝ) → (1 − ((𝐴↑2) / 2)) ∈ ℝ)
117, 9, 10sylancr 590 . . . . . 6 (𝐴 ∈ ℝ → (1 − ((𝐴↑2) / 2)) ∈ ℝ)
1211recnd 10661 . . . . 5 (𝐴 ∈ ℝ → (1 − ((𝐴↑2) / 2)) ∈ ℂ)
13 ax-icn 10588 . . . . . 6 i ∈ ℂ
14 3nn0 11906 . . . . . . . . . 10 3 ∈ ℕ0
15 reexpcl 13445 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℝ)
1614, 15mpan2 690 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴↑3) ∈ ℝ)
17 6re 11718 . . . . . . . . . 10 6 ∈ ℝ
18 6pos 11738 . . . . . . . . . . 11 0 < 6
1917, 18gt0ne0ii 11168 . . . . . . . . . 10 6 ≠ 0
20 redivcl 11351 . . . . . . . . . 10 (((𝐴↑3) ∈ ℝ ∧ 6 ∈ ℝ ∧ 6 ≠ 0) → ((𝐴↑3) / 6) ∈ ℝ)
2117, 19, 20mp3an23 1450 . . . . . . . . 9 ((𝐴↑3) ∈ ℝ → ((𝐴↑3) / 6) ∈ ℝ)
2216, 21syl 17 . . . . . . . 8 (𝐴 ∈ ℝ → ((𝐴↑3) / 6) ∈ ℝ)
23 resubcl 10942 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ ((𝐴↑3) / 6) ∈ ℝ) → (𝐴 − ((𝐴↑3) / 6)) ∈ ℝ)
2422, 23mpdan 686 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 − ((𝐴↑3) / 6)) ∈ ℝ)
2524recnd 10661 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 − ((𝐴↑3) / 6)) ∈ ℂ)
26 mulcl 10613 . . . . . 6 ((i ∈ ℂ ∧ (𝐴 − ((𝐴↑3) / 6)) ∈ ℂ) → (i · (𝐴 − ((𝐴↑3) / 6))) ∈ ℂ)
2713, 25, 26sylancr 590 . . . . 5 (𝐴 ∈ ℝ → (i · (𝐴 − ((𝐴↑3) / 6))) ∈ ℂ)
2812, 27addcld 10652 . . . 4 (𝐴 ∈ ℝ → ((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) ∈ ℂ)
29 mulcl 10613 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
3013, 2, 29sylancr 590 . . . . 5 (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ)
31 4nn0 11907 . . . . 5 4 ∈ ℕ0
323eftlcl 15455 . . . . 5 (((i · 𝐴) ∈ ℂ ∧ 4 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘) ∈ ℂ)
3330, 31, 32sylancl 589 . . . 4 (𝐴 ∈ ℝ → Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘) ∈ ℂ)
3428, 33imaddd 14569 . . 3 (𝐴 ∈ ℝ → (ℑ‘(((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))) = ((ℑ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
3511, 24crimd 14586 . . . 4 (𝐴 ∈ ℝ → (ℑ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) = (𝐴 − ((𝐴↑3) / 6)))
3635oveq1d 7151 . . 3 (𝐴 ∈ ℝ → ((ℑ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
376, 34, 363eqtrd 2837 . 2 (𝐴 ∈ ℝ → (ℑ‘(exp‘(i · 𝐴))) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
381, 37eqtrd 2833 1 (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111   ≠ wne 2987   ↦ cmpt 5111  ‘cfv 6325  (class class class)co 7136  ℂcc 10527  ℝcr 10528  0cc0 10529  1c1 10530  ici 10531   + caddc 10532   · cmul 10534   − cmin 10862   / cdiv 11289  2c2 11683  3c3 11684  4c4 11685  6c6 11687  ℕ0cn0 11888  ℤ≥cuz 12234  ↑cexp 13428  !cfa 13632  ℑcim 14452  Σcsu 15037  expce 15410  sincsin 15412 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-inf2 9091  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-pm 8395  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-sup 8893  df-inf 8894  df-oi 8961  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-3 11692  df-4 11693  df-5 11694  df-6 11695  df-n0 11889  df-z 11973  df-uz 12235  df-rp 12381  df-ico 12735  df-fz 12889  df-fzo 13032  df-fl 13160  df-seq 13368  df-exp 13429  df-fac 13633  df-hash 13690  df-shft 14421  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-sum 15038  df-ef 15416  df-sin 15418 This theorem is referenced by:  sin01bnd  15533
 Copyright terms: Public domain W3C validator