| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resin4p | Structured version Visualization version GIF version | ||
| Description: Separate out the first four terms of the infinite series expansion of the sine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| Ref | Expression |
|---|---|
| efi4p.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) |
| Ref | Expression |
|---|---|
| resin4p | ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resinval 16044 | . 2 ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = (ℑ‘(exp‘(i · 𝐴)))) | |
| 2 | recn 11096 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 3 | efi4p.1 | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) | |
| 4 | 3 | efi4p 16046 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) |
| 6 | 5 | fveq2d 6826 | . . 3 ⊢ (𝐴 ∈ ℝ → (ℑ‘(exp‘(i · 𝐴))) = (ℑ‘(((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
| 7 | 1re 11112 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 8 | resqcl 14031 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ) | |
| 9 | 8 | rehalfcld 12368 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((𝐴↑2) / 2) ∈ ℝ) |
| 10 | resubcl 11425 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ ((𝐴↑2) / 2) ∈ ℝ) → (1 − ((𝐴↑2) / 2)) ∈ ℝ) | |
| 11 | 7, 9, 10 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (1 − ((𝐴↑2) / 2)) ∈ ℝ) |
| 12 | 11 | recnd 11140 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (1 − ((𝐴↑2) / 2)) ∈ ℂ) |
| 13 | ax-icn 11065 | . . . . . 6 ⊢ i ∈ ℂ | |
| 14 | 3nn0 12399 | . . . . . . . . . 10 ⊢ 3 ∈ ℕ0 | |
| 15 | reexpcl 13985 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℝ) | |
| 16 | 14, 15 | mpan2 691 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (𝐴↑3) ∈ ℝ) |
| 17 | 6re 12215 | . . . . . . . . . 10 ⊢ 6 ∈ ℝ | |
| 18 | 6pos 12235 | . . . . . . . . . . 11 ⊢ 0 < 6 | |
| 19 | 17, 18 | gt0ne0ii 11653 | . . . . . . . . . 10 ⊢ 6 ≠ 0 |
| 20 | redivcl 11840 | . . . . . . . . . 10 ⊢ (((𝐴↑3) ∈ ℝ ∧ 6 ∈ ℝ ∧ 6 ≠ 0) → ((𝐴↑3) / 6) ∈ ℝ) | |
| 21 | 17, 19, 20 | mp3an23 1455 | . . . . . . . . 9 ⊢ ((𝐴↑3) ∈ ℝ → ((𝐴↑3) / 6) ∈ ℝ) |
| 22 | 16, 21 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → ((𝐴↑3) / 6) ∈ ℝ) |
| 23 | resubcl 11425 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ ((𝐴↑3) / 6) ∈ ℝ) → (𝐴 − ((𝐴↑3) / 6)) ∈ ℝ) | |
| 24 | 22, 23 | mpdan 687 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 − ((𝐴↑3) / 6)) ∈ ℝ) |
| 25 | 24 | recnd 11140 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 − ((𝐴↑3) / 6)) ∈ ℂ) |
| 26 | mulcl 11090 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ (𝐴 − ((𝐴↑3) / 6)) ∈ ℂ) → (i · (𝐴 − ((𝐴↑3) / 6))) ∈ ℂ) | |
| 27 | 13, 25, 26 | sylancr 587 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (i · (𝐴 − ((𝐴↑3) / 6))) ∈ ℂ) |
| 28 | 12, 27 | addcld 11131 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) ∈ ℂ) |
| 29 | mulcl 11090 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
| 30 | 13, 2, 29 | sylancr 587 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ) |
| 31 | 4nn0 12400 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
| 32 | 3 | eftlcl 16016 | . . . . 5 ⊢ (((i · 𝐴) ∈ ℂ ∧ 4 ∈ ℕ0) → Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘) ∈ ℂ) |
| 33 | 30, 31, 32 | sylancl 586 | . . . 4 ⊢ (𝐴 ∈ ℝ → Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘) ∈ ℂ) |
| 34 | 28, 33 | imaddd 15122 | . . 3 ⊢ (𝐴 ∈ ℝ → (ℑ‘(((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) = ((ℑ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) + (ℑ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
| 35 | 11, 24 | crimd 15139 | . . . 4 ⊢ (𝐴 ∈ ℝ → (ℑ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) = (𝐴 − ((𝐴↑3) / 6))) |
| 36 | 35 | oveq1d 7361 | . . 3 ⊢ (𝐴 ∈ ℝ → ((ℑ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) + (ℑ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
| 37 | 6, 34, 36 | 3eqtrd 2770 | . 2 ⊢ (𝐴 ∈ ℝ → (ℑ‘(exp‘(i · 𝐴))) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
| 38 | 1, 37 | eqtrd 2766 | 1 ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 1c1 11007 ici 11008 + caddc 11009 · cmul 11011 − cmin 11344 / cdiv 11774 2c2 12180 3c3 12181 4c4 12182 6c6 12184 ℕ0cn0 12381 ℤ≥cuz 12732 ↑cexp 13968 !cfa 14180 ℑcim 15005 Σcsu 15593 expce 15968 sincsin 15970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-ico 13251 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-fac 14181 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 |
| This theorem is referenced by: sin01bnd 16094 |
| Copyright terms: Public domain | W3C validator |