MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resin4p Structured version   Visualization version   GIF version

Theorem resin4p 15493
Description: Separate out the first four terms of the infinite series expansion of the sine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
efi4p.1 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
Assertion
Ref Expression
resin4p (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
Distinct variable groups:   𝐴,𝑘,𝑛   𝑘,𝐹
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem resin4p
StepHypRef Expression
1 resinval 15490 . 2 (𝐴 ∈ ℝ → (sin‘𝐴) = (ℑ‘(exp‘(i · 𝐴))))
2 recn 10629 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 efi4p.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
43efi4p 15492 . . . . 5 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
52, 4syl 17 . . . 4 (𝐴 ∈ ℝ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
65fveq2d 6676 . . 3 (𝐴 ∈ ℝ → (ℑ‘(exp‘(i · 𝐴))) = (ℑ‘(((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
7 1re 10643 . . . . . . 7 1 ∈ ℝ
8 resqcl 13493 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ)
98rehalfcld 11887 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴↑2) / 2) ∈ ℝ)
10 resubcl 10952 . . . . . . 7 ((1 ∈ ℝ ∧ ((𝐴↑2) / 2) ∈ ℝ) → (1 − ((𝐴↑2) / 2)) ∈ ℝ)
117, 9, 10sylancr 589 . . . . . 6 (𝐴 ∈ ℝ → (1 − ((𝐴↑2) / 2)) ∈ ℝ)
1211recnd 10671 . . . . 5 (𝐴 ∈ ℝ → (1 − ((𝐴↑2) / 2)) ∈ ℂ)
13 ax-icn 10598 . . . . . 6 i ∈ ℂ
14 3nn0 11918 . . . . . . . . . 10 3 ∈ ℕ0
15 reexpcl 13449 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℝ)
1614, 15mpan2 689 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴↑3) ∈ ℝ)
17 6re 11730 . . . . . . . . . 10 6 ∈ ℝ
18 6pos 11750 . . . . . . . . . . 11 0 < 6
1917, 18gt0ne0ii 11178 . . . . . . . . . 10 6 ≠ 0
20 redivcl 11361 . . . . . . . . . 10 (((𝐴↑3) ∈ ℝ ∧ 6 ∈ ℝ ∧ 6 ≠ 0) → ((𝐴↑3) / 6) ∈ ℝ)
2117, 19, 20mp3an23 1449 . . . . . . . . 9 ((𝐴↑3) ∈ ℝ → ((𝐴↑3) / 6) ∈ ℝ)
2216, 21syl 17 . . . . . . . 8 (𝐴 ∈ ℝ → ((𝐴↑3) / 6) ∈ ℝ)
23 resubcl 10952 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ ((𝐴↑3) / 6) ∈ ℝ) → (𝐴 − ((𝐴↑3) / 6)) ∈ ℝ)
2422, 23mpdan 685 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 − ((𝐴↑3) / 6)) ∈ ℝ)
2524recnd 10671 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 − ((𝐴↑3) / 6)) ∈ ℂ)
26 mulcl 10623 . . . . . 6 ((i ∈ ℂ ∧ (𝐴 − ((𝐴↑3) / 6)) ∈ ℂ) → (i · (𝐴 − ((𝐴↑3) / 6))) ∈ ℂ)
2713, 25, 26sylancr 589 . . . . 5 (𝐴 ∈ ℝ → (i · (𝐴 − ((𝐴↑3) / 6))) ∈ ℂ)
2812, 27addcld 10662 . . . 4 (𝐴 ∈ ℝ → ((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) ∈ ℂ)
29 mulcl 10623 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
3013, 2, 29sylancr 589 . . . . 5 (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ)
31 4nn0 11919 . . . . 5 4 ∈ ℕ0
323eftlcl 15462 . . . . 5 (((i · 𝐴) ∈ ℂ ∧ 4 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘) ∈ ℂ)
3330, 31, 32sylancl 588 . . . 4 (𝐴 ∈ ℝ → Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘) ∈ ℂ)
3428, 33imaddd 14576 . . 3 (𝐴 ∈ ℝ → (ℑ‘(((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))) = ((ℑ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
3511, 24crimd 14593 . . . 4 (𝐴 ∈ ℝ → (ℑ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) = (𝐴 − ((𝐴↑3) / 6)))
3635oveq1d 7173 . . 3 (𝐴 ∈ ℝ → ((ℑ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
376, 34, 363eqtrd 2862 . 2 (𝐴 ∈ ℝ → (ℑ‘(exp‘(i · 𝐴))) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
381, 37eqtrd 2858 1 (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wne 3018  cmpt 5148  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540  ici 10541   + caddc 10542   · cmul 10544  cmin 10872   / cdiv 11299  2c2 11695  3c3 11696  4c4 11697  6c6 11699  0cn0 11900  cuz 12246  cexp 13432  !cfa 13636  cim 14459  Σcsu 15044  expce 15417  sincsin 15419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-fac 13637  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425
This theorem is referenced by:  sin01bnd  15540
  Copyright terms: Public domain W3C validator