| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pgrple2abl | Structured version Visualization version GIF version | ||
| Description: Every symmetric group on a set with at most 2 elements is abelian. (Contributed by AV, 16-Mar-2019.) |
| Ref | Expression |
|---|---|
| pgrple2abl.g | ⊢ 𝐺 = (SymGrp‘𝐴) |
| Ref | Expression |
|---|---|
| pgrple2abl | ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → 𝐺 ∈ Abel) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pgrple2abl.g | . . . 4 ⊢ 𝐺 = (SymGrp‘𝐴) | |
| 2 | 1 | symggrp 19306 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Grp) |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → 𝐺 ∈ Grp) |
| 4 | 2nn0 12435 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 5 | hashbnd 14277 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 2 ∈ ℕ0 ∧ (♯‘𝐴) ≤ 2) → 𝐴 ∈ Fin) | |
| 6 | 4, 5 | mp3an2 1451 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → 𝐴 ∈ Fin) |
| 7 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 8 | 1, 7 | symghash 19284 | . . . 4 ⊢ (𝐴 ∈ Fin → (♯‘(Base‘𝐺)) = (!‘(♯‘𝐴))) |
| 9 | 6, 8 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → (♯‘(Base‘𝐺)) = (!‘(♯‘𝐴))) |
| 10 | hashcl 14297 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
| 11 | 6, 10 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → (♯‘𝐴) ∈ ℕ0) |
| 12 | faccl 14224 | . . . . . 6 ⊢ ((♯‘𝐴) ∈ ℕ0 → (!‘(♯‘𝐴)) ∈ ℕ) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → (!‘(♯‘𝐴)) ∈ ℕ) |
| 14 | 13 | nnred 12177 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → (!‘(♯‘𝐴)) ∈ ℝ) |
| 15 | 11, 11 | nn0expcld 14187 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → ((♯‘𝐴)↑(♯‘𝐴)) ∈ ℕ0) |
| 16 | 15 | nn0red 12480 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → ((♯‘𝐴)↑(♯‘𝐴)) ∈ ℝ) |
| 17 | 6re 12252 | . . . . 5 ⊢ 6 ∈ ℝ | |
| 18 | 17 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → 6 ∈ ℝ) |
| 19 | facubnd 14241 | . . . . 5 ⊢ ((♯‘𝐴) ∈ ℕ0 → (!‘(♯‘𝐴)) ≤ ((♯‘𝐴)↑(♯‘𝐴))) | |
| 20 | 11, 19 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → (!‘(♯‘𝐴)) ≤ ((♯‘𝐴)↑(♯‘𝐴))) |
| 21 | exple2lt6 48325 | . . . . 5 ⊢ (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐴) ≤ 2) → ((♯‘𝐴)↑(♯‘𝐴)) < 6) | |
| 22 | 11, 21 | sylancom 588 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → ((♯‘𝐴)↑(♯‘𝐴)) < 6) |
| 23 | 14, 16, 18, 20, 22 | lelttrd 11308 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → (!‘(♯‘𝐴)) < 6) |
| 24 | 9, 23 | eqbrtrd 5124 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → (♯‘(Base‘𝐺)) < 6) |
| 25 | 7 | lt6abl 19801 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (♯‘(Base‘𝐺)) < 6) → 𝐺 ∈ Abel) |
| 26 | 3, 24, 25 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → 𝐺 ∈ Abel) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Fincfn 8895 ℝcr 11043 < clt 11184 ≤ cle 11185 ℕcn 12162 2c2 12217 6c6 12221 ℕ0cn0 12418 ↑cexp 14002 !cfa 14214 ♯chash 14271 Basecbs 17155 Grpcgrp 18841 SymGrpcsymg 19275 Abelcabl 19687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-disj 5070 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-omul 8416 df-er 8648 df-ec 8650 df-qs 8654 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-oi 9439 df-dju 9830 df-card 9868 df-acn 9871 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-xnn0 12492 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-fac 14215 df-bc 14244 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 df-dvds 16199 df-gcd 16441 df-prm 16618 df-pc 16784 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-tset 17215 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-efmnd 18772 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-eqg 19033 df-symg 19276 df-od 19434 df-gex 19435 df-cmn 19688 df-abl 19689 df-cyg 19784 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |