![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pgrple2abl | Structured version Visualization version GIF version |
Description: Every symmetric group on a set with at most 2 elements is abelian. (Contributed by AV, 16-Mar-2019.) |
Ref | Expression |
---|---|
pgrple2abl.g | ⊢ 𝐺 = (SymGrp‘𝐴) |
Ref | Expression |
---|---|
pgrple2abl | ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → 𝐺 ∈ Abel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pgrple2abl.g | . . . 4 ⊢ 𝐺 = (SymGrp‘𝐴) | |
2 | 1 | symggrp 19190 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Grp) |
3 | 2 | adantr 482 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → 𝐺 ∈ Grp) |
4 | 2nn0 12438 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
5 | hashbnd 14245 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 2 ∈ ℕ0 ∧ (♯‘𝐴) ≤ 2) → 𝐴 ∈ Fin) | |
6 | 4, 5 | mp3an2 1450 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → 𝐴 ∈ Fin) |
7 | eqid 2733 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
8 | 1, 7 | symghash 19167 | . . . 4 ⊢ (𝐴 ∈ Fin → (♯‘(Base‘𝐺)) = (!‘(♯‘𝐴))) |
9 | 6, 8 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → (♯‘(Base‘𝐺)) = (!‘(♯‘𝐴))) |
10 | hashcl 14265 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
11 | 6, 10 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → (♯‘𝐴) ∈ ℕ0) |
12 | faccl 14192 | . . . . . 6 ⊢ ((♯‘𝐴) ∈ ℕ0 → (!‘(♯‘𝐴)) ∈ ℕ) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → (!‘(♯‘𝐴)) ∈ ℕ) |
14 | 13 | nnred 12176 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → (!‘(♯‘𝐴)) ∈ ℝ) |
15 | 11, 11 | nn0expcld 14158 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → ((♯‘𝐴)↑(♯‘𝐴)) ∈ ℕ0) |
16 | 15 | nn0red 12482 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → ((♯‘𝐴)↑(♯‘𝐴)) ∈ ℝ) |
17 | 6re 12251 | . . . . 5 ⊢ 6 ∈ ℝ | |
18 | 17 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → 6 ∈ ℝ) |
19 | facubnd 14209 | . . . . 5 ⊢ ((♯‘𝐴) ∈ ℕ0 → (!‘(♯‘𝐴)) ≤ ((♯‘𝐴)↑(♯‘𝐴))) | |
20 | 11, 19 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → (!‘(♯‘𝐴)) ≤ ((♯‘𝐴)↑(♯‘𝐴))) |
21 | exple2lt6 46530 | . . . . 5 ⊢ (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐴) ≤ 2) → ((♯‘𝐴)↑(♯‘𝐴)) < 6) | |
22 | 11, 21 | sylancom 589 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → ((♯‘𝐴)↑(♯‘𝐴)) < 6) |
23 | 14, 16, 18, 20, 22 | lelttrd 11321 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → (!‘(♯‘𝐴)) < 6) |
24 | 9, 23 | eqbrtrd 5131 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → (♯‘(Base‘𝐺)) < 6) |
25 | 7 | lt6abl 19680 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (♯‘(Base‘𝐺)) < 6) → 𝐺 ∈ Abel) |
26 | 3, 24, 25 | syl2anc 585 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ≤ 2) → 𝐺 ∈ Abel) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 class class class wbr 5109 ‘cfv 6500 (class class class)co 7361 Fincfn 8889 ℝcr 11058 < clt 11197 ≤ cle 11198 ℕcn 12161 2c2 12216 6c6 12220 ℕ0cn0 12421 ↑cexp 13976 !cfa 14182 ♯chash 14239 Basecbs 17091 Grpcgrp 18756 SymGrpcsymg 19156 Abelcabl 19571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-inf2 9585 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 ax-pre-sup 11137 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-tp 4595 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-disj 5075 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-se 5593 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-2o 8417 df-oadd 8420 df-omul 8421 df-er 8654 df-ec 8656 df-qs 8660 df-map 8773 df-pm 8774 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-sup 9386 df-inf 9387 df-oi 9454 df-dju 9845 df-card 9883 df-acn 9886 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-div 11821 df-nn 12162 df-2 12224 df-3 12225 df-4 12226 df-5 12227 df-6 12228 df-7 12229 df-8 12230 df-9 12231 df-n0 12422 df-xnn0 12494 df-z 12508 df-dec 12627 df-uz 12772 df-q 12882 df-rp 12924 df-fz 13434 df-fzo 13577 df-fl 13706 df-mod 13784 df-seq 13916 df-exp 13977 df-fac 14183 df-bc 14212 df-hash 14240 df-cj 14993 df-re 14994 df-im 14995 df-sqrt 15129 df-abs 15130 df-clim 15379 df-sum 15580 df-dvds 16145 df-gcd 16383 df-prm 16556 df-pc 16717 df-struct 17027 df-sets 17044 df-slot 17062 df-ndx 17074 df-base 17092 df-ress 17121 df-plusg 17154 df-tset 17160 df-0g 17331 df-mgm 18505 df-sgrp 18554 df-mnd 18565 df-efmnd 18687 df-grp 18759 df-minusg 18760 df-sbg 18761 df-mulg 18881 df-subg 18933 df-eqg 18935 df-symg 19157 df-od 19318 df-gex 19319 df-cmn 19572 df-abl 19573 df-cyg 19663 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |