Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pgrple2abl Structured version   Visualization version   GIF version

Theorem pgrple2abl 44764
Description: Every symmetric group on a set with at most 2 elements is abelian. (Contributed by AV, 16-Mar-2019.)
Hypothesis
Ref Expression
pgrple2abl.g 𝐺 = (SymGrp‘𝐴)
Assertion
Ref Expression
pgrple2abl ((𝐴𝑉 ∧ (♯‘𝐴) ≤ 2) → 𝐺 ∈ Abel)

Proof of Theorem pgrple2abl
StepHypRef Expression
1 pgrple2abl.g . . . 4 𝐺 = (SymGrp‘𝐴)
21symggrp 18524 . . 3 (𝐴𝑉𝐺 ∈ Grp)
32adantr 484 . 2 ((𝐴𝑉 ∧ (♯‘𝐴) ≤ 2) → 𝐺 ∈ Grp)
4 2nn0 11906 . . . . 5 2 ∈ ℕ0
5 hashbnd 13696 . . . . 5 ((𝐴𝑉 ∧ 2 ∈ ℕ0 ∧ (♯‘𝐴) ≤ 2) → 𝐴 ∈ Fin)
64, 5mp3an2 1446 . . . 4 ((𝐴𝑉 ∧ (♯‘𝐴) ≤ 2) → 𝐴 ∈ Fin)
7 eqid 2801 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
81, 7symghash 18502 . . . 4 (𝐴 ∈ Fin → (♯‘(Base‘𝐺)) = (!‘(♯‘𝐴)))
96, 8syl 17 . . 3 ((𝐴𝑉 ∧ (♯‘𝐴) ≤ 2) → (♯‘(Base‘𝐺)) = (!‘(♯‘𝐴)))
10 hashcl 13717 . . . . . . 7 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
116, 10syl 17 . . . . . 6 ((𝐴𝑉 ∧ (♯‘𝐴) ≤ 2) → (♯‘𝐴) ∈ ℕ0)
12 faccl 13643 . . . . . 6 ((♯‘𝐴) ∈ ℕ0 → (!‘(♯‘𝐴)) ∈ ℕ)
1311, 12syl 17 . . . . 5 ((𝐴𝑉 ∧ (♯‘𝐴) ≤ 2) → (!‘(♯‘𝐴)) ∈ ℕ)
1413nnred 11644 . . . 4 ((𝐴𝑉 ∧ (♯‘𝐴) ≤ 2) → (!‘(♯‘𝐴)) ∈ ℝ)
1511, 11nn0expcld 13607 . . . . 5 ((𝐴𝑉 ∧ (♯‘𝐴) ≤ 2) → ((♯‘𝐴)↑(♯‘𝐴)) ∈ ℕ0)
1615nn0red 11948 . . . 4 ((𝐴𝑉 ∧ (♯‘𝐴) ≤ 2) → ((♯‘𝐴)↑(♯‘𝐴)) ∈ ℝ)
17 6re 11719 . . . . 5 6 ∈ ℝ
1817a1i 11 . . . 4 ((𝐴𝑉 ∧ (♯‘𝐴) ≤ 2) → 6 ∈ ℝ)
19 facubnd 13660 . . . . 5 ((♯‘𝐴) ∈ ℕ0 → (!‘(♯‘𝐴)) ≤ ((♯‘𝐴)↑(♯‘𝐴)))
2011, 19syl 17 . . . 4 ((𝐴𝑉 ∧ (♯‘𝐴) ≤ 2) → (!‘(♯‘𝐴)) ≤ ((♯‘𝐴)↑(♯‘𝐴)))
21 exple2lt6 44763 . . . . 5 (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐴) ≤ 2) → ((♯‘𝐴)↑(♯‘𝐴)) < 6)
2211, 21sylancom 591 . . . 4 ((𝐴𝑉 ∧ (♯‘𝐴) ≤ 2) → ((♯‘𝐴)↑(♯‘𝐴)) < 6)
2314, 16, 18, 20, 22lelttrd 10791 . . 3 ((𝐴𝑉 ∧ (♯‘𝐴) ≤ 2) → (!‘(♯‘𝐴)) < 6)
249, 23eqbrtrd 5055 . 2 ((𝐴𝑉 ∧ (♯‘𝐴) ≤ 2) → (♯‘(Base‘𝐺)) < 6)
257lt6abl 19012 . 2 ((𝐺 ∈ Grp ∧ (♯‘(Base‘𝐺)) < 6) → 𝐺 ∈ Abel)
263, 24, 25syl2anc 587 1 ((𝐴𝑉 ∧ (♯‘𝐴) ≤ 2) → 𝐺 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112   class class class wbr 5033  cfv 6328  (class class class)co 7139  Fincfn 8496  cr 10529   < clt 10668  cle 10669  cn 11629  2c2 11684  6c6 11688  0cn0 11889  cexp 13429  !cfa 13633  chash 13690  Basecbs 16479  Grpcgrp 18099  SymGrpcsymg 18491  Abelcabl 18903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-disj 4999  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-omul 8094  df-er 8276  df-ec 8278  df-qs 8282  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-acn 9359  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-sum 15039  df-dvds 15604  df-gcd 15838  df-prm 16010  df-pc 16168  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-tset 16580  df-0g 16711  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-efmnd 18030  df-grp 18102  df-minusg 18103  df-sbg 18104  df-mulg 18221  df-subg 18272  df-eqg 18274  df-symg 18492  df-od 18652  df-gex 18653  df-cmn 18904  df-abl 18905  df-cyg 18994
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator