MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recos4p Structured version   Visualization version   GIF version

Theorem recos4p 15089
Description: Separate out the first four terms of the infinite series expansion of the cosine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
efi4p.1 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
Assertion
Ref Expression
recos4p (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
Distinct variable groups:   𝐴,𝑘,𝑛   𝑘,𝐹
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem recos4p
StepHypRef Expression
1 recosval 15086 . 2 (𝐴 ∈ ℝ → (cos‘𝐴) = (ℜ‘(exp‘(i · 𝐴))))
2 recn 10311 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 efi4p.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
43efi4p 15087 . . . . 5 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
52, 4syl 17 . . . 4 (𝐴 ∈ ℝ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
65fveq2d 6412 . . 3 (𝐴 ∈ ℝ → (ℜ‘(exp‘(i · 𝐴))) = (ℜ‘(((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
7 1re 10325 . . . . . . 7 1 ∈ ℝ
8 resqcl 13154 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ)
98rehalfcld 11546 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴↑2) / 2) ∈ ℝ)
10 resubcl 10630 . . . . . . 7 ((1 ∈ ℝ ∧ ((𝐴↑2) / 2) ∈ ℝ) → (1 − ((𝐴↑2) / 2)) ∈ ℝ)
117, 9, 10sylancr 577 . . . . . 6 (𝐴 ∈ ℝ → (1 − ((𝐴↑2) / 2)) ∈ ℝ)
1211recnd 10353 . . . . 5 (𝐴 ∈ ℝ → (1 − ((𝐴↑2) / 2)) ∈ ℂ)
13 ax-icn 10280 . . . . . 6 i ∈ ℂ
14 3nn0 11577 . . . . . . . . . 10 3 ∈ ℕ0
15 reexpcl 13100 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℝ)
1614, 15mpan2 674 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴↑3) ∈ ℝ)
17 6re 11385 . . . . . . . . . 10 6 ∈ ℝ
18 6pos 11402 . . . . . . . . . . 11 0 < 6
1917, 18gt0ne0ii 10849 . . . . . . . . . 10 6 ≠ 0
20 redivcl 11029 . . . . . . . . . 10 (((𝐴↑3) ∈ ℝ ∧ 6 ∈ ℝ ∧ 6 ≠ 0) → ((𝐴↑3) / 6) ∈ ℝ)
2117, 19, 20mp3an23 1570 . . . . . . . . 9 ((𝐴↑3) ∈ ℝ → ((𝐴↑3) / 6) ∈ ℝ)
2216, 21syl 17 . . . . . . . 8 (𝐴 ∈ ℝ → ((𝐴↑3) / 6) ∈ ℝ)
23 resubcl 10630 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ ((𝐴↑3) / 6) ∈ ℝ) → (𝐴 − ((𝐴↑3) / 6)) ∈ ℝ)
2422, 23mpdan 670 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 − ((𝐴↑3) / 6)) ∈ ℝ)
2524recnd 10353 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 − ((𝐴↑3) / 6)) ∈ ℂ)
26 mulcl 10305 . . . . . 6 ((i ∈ ℂ ∧ (𝐴 − ((𝐴↑3) / 6)) ∈ ℂ) → (i · (𝐴 − ((𝐴↑3) / 6))) ∈ ℂ)
2713, 25, 26sylancr 577 . . . . 5 (𝐴 ∈ ℝ → (i · (𝐴 − ((𝐴↑3) / 6))) ∈ ℂ)
2812, 27addcld 10344 . . . 4 (𝐴 ∈ ℝ → ((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) ∈ ℂ)
29 mulcl 10305 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
3013, 2, 29sylancr 577 . . . . 5 (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ)
31 4nn0 11578 . . . . 5 4 ∈ ℕ0
323eftlcl 15057 . . . . 5 (((i · 𝐴) ∈ ℂ ∧ 4 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘) ∈ ℂ)
3330, 31, 32sylancl 576 . . . 4 (𝐴 ∈ ℝ → Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘) ∈ ℂ)
3428, 33readdd 14177 . . 3 (𝐴 ∈ ℝ → (ℜ‘(((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))) = ((ℜ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
3511, 24crred 14194 . . . 4 (𝐴 ∈ ℝ → (ℜ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) = (1 − ((𝐴↑2) / 2)))
3635oveq1d 6889 . . 3 (𝐴 ∈ ℝ → ((ℜ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
376, 34, 363eqtrd 2844 . 2 (𝐴 ∈ ℝ → (ℜ‘(exp‘(i · 𝐴))) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
381, 37eqtrd 2840 1 (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1637  wcel 2156  wne 2978  cmpt 4923  cfv 6101  (class class class)co 6874  cc 10219  cr 10220  0cc0 10221  1c1 10222  ici 10223   + caddc 10224   · cmul 10226  cmin 10551   / cdiv 10969  2c2 11356  3c3 11357  4c4 11358  6c6 11360  0cn0 11559  cuz 11904  cexp 13083  !cfa 13280  cre 14060  Σcsu 14639  expce 15012  cosccos 15015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-inf2 8785  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298  ax-pre-sup 10299  ax-addf 10300  ax-mulf 10301
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-se 5271  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-om 7296  df-1st 7398  df-2nd 7399  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-1o 7796  df-oadd 7800  df-er 7979  df-pm 8095  df-en 8193  df-dom 8194  df-sdom 8195  df-fin 8196  df-sup 8587  df-inf 8588  df-oi 8654  df-card 9048  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-div 10970  df-nn 11306  df-2 11364  df-3 11365  df-4 11366  df-5 11367  df-6 11368  df-n0 11560  df-z 11644  df-uz 11905  df-rp 12047  df-ico 12399  df-fz 12550  df-fzo 12690  df-fl 12817  df-seq 13025  df-exp 13084  df-fac 13281  df-hash 13338  df-shft 14030  df-cj 14062  df-re 14063  df-im 14064  df-sqrt 14198  df-abs 14199  df-limsup 14425  df-clim 14442  df-rlim 14443  df-sum 14640  df-ef 15018  df-cos 15021
This theorem is referenced by:  cos01bnd  15136
  Copyright terms: Public domain W3C validator