MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recos4p Structured version   Visualization version   GIF version

Theorem recos4p 16043
Description: Separate out the first four terms of the infinite series expansion of the cosine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
efi4p.1 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
Assertion
Ref Expression
recos4p (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
Distinct variable groups:   𝐴,𝑘,𝑛   𝑘,𝐹
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem recos4p
StepHypRef Expression
1 recosval 16040 . 2 (𝐴 ∈ ℝ → (cos‘𝐴) = (ℜ‘(exp‘(i · 𝐴))))
2 recn 11091 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 efi4p.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
43efi4p 16041 . . . . 5 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
52, 4syl 17 . . . 4 (𝐴 ∈ ℝ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
65fveq2d 6821 . . 3 (𝐴 ∈ ℝ → (ℜ‘(exp‘(i · 𝐴))) = (ℜ‘(((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
7 1re 11107 . . . . . . 7 1 ∈ ℝ
8 resqcl 14026 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ)
98rehalfcld 12363 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴↑2) / 2) ∈ ℝ)
10 resubcl 11420 . . . . . . 7 ((1 ∈ ℝ ∧ ((𝐴↑2) / 2) ∈ ℝ) → (1 − ((𝐴↑2) / 2)) ∈ ℝ)
117, 9, 10sylancr 587 . . . . . 6 (𝐴 ∈ ℝ → (1 − ((𝐴↑2) / 2)) ∈ ℝ)
1211recnd 11135 . . . . 5 (𝐴 ∈ ℝ → (1 − ((𝐴↑2) / 2)) ∈ ℂ)
13 ax-icn 11060 . . . . . 6 i ∈ ℂ
14 3nn0 12394 . . . . . . . . . 10 3 ∈ ℕ0
15 reexpcl 13980 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℝ)
1614, 15mpan2 691 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴↑3) ∈ ℝ)
17 6re 12210 . . . . . . . . . 10 6 ∈ ℝ
18 6pos 12230 . . . . . . . . . . 11 0 < 6
1917, 18gt0ne0ii 11648 . . . . . . . . . 10 6 ≠ 0
20 redivcl 11835 . . . . . . . . . 10 (((𝐴↑3) ∈ ℝ ∧ 6 ∈ ℝ ∧ 6 ≠ 0) → ((𝐴↑3) / 6) ∈ ℝ)
2117, 19, 20mp3an23 1455 . . . . . . . . 9 ((𝐴↑3) ∈ ℝ → ((𝐴↑3) / 6) ∈ ℝ)
2216, 21syl 17 . . . . . . . 8 (𝐴 ∈ ℝ → ((𝐴↑3) / 6) ∈ ℝ)
23 resubcl 11420 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ ((𝐴↑3) / 6) ∈ ℝ) → (𝐴 − ((𝐴↑3) / 6)) ∈ ℝ)
2422, 23mpdan 687 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 − ((𝐴↑3) / 6)) ∈ ℝ)
2524recnd 11135 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 − ((𝐴↑3) / 6)) ∈ ℂ)
26 mulcl 11085 . . . . . 6 ((i ∈ ℂ ∧ (𝐴 − ((𝐴↑3) / 6)) ∈ ℂ) → (i · (𝐴 − ((𝐴↑3) / 6))) ∈ ℂ)
2713, 25, 26sylancr 587 . . . . 5 (𝐴 ∈ ℝ → (i · (𝐴 − ((𝐴↑3) / 6))) ∈ ℂ)
2812, 27addcld 11126 . . . 4 (𝐴 ∈ ℝ → ((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) ∈ ℂ)
29 mulcl 11085 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
3013, 2, 29sylancr 587 . . . . 5 (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ)
31 4nn0 12395 . . . . 5 4 ∈ ℕ0
323eftlcl 16011 . . . . 5 (((i · 𝐴) ∈ ℂ ∧ 4 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘) ∈ ℂ)
3330, 31, 32sylancl 586 . . . 4 (𝐴 ∈ ℝ → Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘) ∈ ℂ)
3428, 33readdd 15116 . . 3 (𝐴 ∈ ℝ → (ℜ‘(((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))) = ((ℜ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
3511, 24crred 15133 . . . 4 (𝐴 ∈ ℝ → (ℜ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) = (1 − ((𝐴↑2) / 2)))
3635oveq1d 7356 . . 3 (𝐴 ∈ ℝ → ((ℜ‘((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6))))) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
376, 34, 363eqtrd 2770 . 2 (𝐴 ∈ ℝ → (ℜ‘(exp‘(i · 𝐴))) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
381, 37eqtrd 2766 1 (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wne 2928  cmpt 5167  cfv 6476  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001  1c1 11002  ici 11003   + caddc 11004   · cmul 11006  cmin 11339   / cdiv 11769  2c2 12175  3c3 12176  4c4 12177  6c6 12179  0cn0 12376  cuz 12727  cexp 13963  !cfa 14175  cre 14999  Σcsu 15588  expce 15963  cosccos 15966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-ico 13246  df-fz 13403  df-fzo 13550  df-fl 13691  df-seq 13904  df-exp 13964  df-fac 14176  df-hash 14233  df-shft 14969  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-limsup 15373  df-clim 15390  df-rlim 15391  df-sum 15589  df-ef 15969  df-cos 15972
This theorem is referenced by:  cos01bnd  16090
  Copyright terms: Public domain W3C validator