| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1m0e1 | Structured version Visualization version GIF version | ||
| Description: 1 - 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 1m0e1 | ⊢ (1 − 0) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11133 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | subid1i 11501 | 1 ⊢ (1 − 0) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7390 0cc0 11075 1c1 11076 − cmin 11412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 |
| This theorem is referenced by: xov1plusxeqvd 13466 fz1isolem 14433 trireciplem 15835 bpoly0 16023 bpoly1 16024 pzriprng1ALT 21413 blcvx 24693 xrhmeo 24851 htpycom 24882 reparphti 24903 reparphtiOLD 24904 pcorevcl 24932 pcorevlem 24933 pi1xfrcnv 24964 vitalilem4 25519 vitalilem5 25520 dvef 25891 dvlipcn 25906 vieta1lem2 26226 dvtaylp 26285 taylthlem2 26289 taylthlem2OLD 26290 tanregt0 26455 dvlog2lem 26568 logtayl 26576 atanlogaddlem 26830 leibpi 26859 scvxcvx 26903 emcllem7 26919 lgamgulmlem2 26947 rpvmasum 27444 brbtwn2 28839 axsegconlem1 28851 ax5seglem4 28866 axpaschlem 28874 axlowdimlem6 28881 axeuclid 28897 axcontlem2 28899 axcontlem4 28901 axcontlem8 28905 elntg2 28919 constrdircl 33762 constrimcl 33767 constrabscl 33775 2sqr3minply 33777 cvxpconn 35236 cvxsconn 35237 sinccvglem 35666 areacirclem4 37712 lcmineqlem3 42026 lcmineqlem12 42035 irrapxlem2 42818 pell1qr1 42866 jm2.18 42984 stoweidlem41 46046 stoweidlem45 46050 stirlinglem1 46079 line2 48745 line2x 48747 amgmwlem 49795 |
| Copyright terms: Public domain | W3C validator |