![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1m0e1 | Structured version Visualization version GIF version |
Description: 1 - 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
1m0e1 | ⊢ (1 − 0) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11210 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | subid1i 11578 | 1 ⊢ (1 − 0) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 (class class class)co 7430 0cc0 11152 1c1 11153 − cmin 11489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-ltxr 11297 df-sub 11491 |
This theorem is referenced by: xov1plusxeqvd 13534 fz1isolem 14496 trireciplem 15894 bpoly0 16082 bpoly1 16083 pzriprng1ALT 21524 blcvx 24833 xrhmeo 24990 htpycom 25021 reparphti 25042 reparphtiOLD 25043 pcorevcl 25071 pcorevlem 25072 pi1xfrcnv 25103 vitalilem4 25659 vitalilem5 25660 dvef 26032 dvlipcn 26047 vieta1lem2 26367 dvtaylp 26426 taylthlem2 26430 taylthlem2OLD 26431 tanregt0 26595 dvlog2lem 26708 logtayl 26716 atanlogaddlem 26970 leibpi 26999 scvxcvx 27043 emcllem7 27059 lgamgulmlem2 27087 rpvmasum 27584 brbtwn2 28934 axsegconlem1 28946 ax5seglem4 28961 axpaschlem 28969 axlowdimlem6 28976 axeuclid 28992 axcontlem2 28994 axcontlem4 28996 axcontlem8 29000 elntg2 29014 2sqr3minply 33752 cvxpconn 35226 cvxsconn 35227 sinccvglem 35656 areacirclem4 37697 lcmineqlem3 42012 lcmineqlem12 42021 irrapxlem2 42810 pell1qr1 42858 jm2.18 42976 stoweidlem41 45996 stoweidlem45 46000 stirlinglem1 46029 difmodm1lt 48371 line2 48601 line2x 48603 amgmwlem 49032 |
Copyright terms: Public domain | W3C validator |