| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1m0e1 | Structured version Visualization version GIF version | ||
| Description: 1 - 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 1m0e1 | ⊢ (1 − 0) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11126 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | subid1i 11494 | 1 ⊢ (1 − 0) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 0cc0 11068 1c1 11069 − cmin 11405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 |
| This theorem is referenced by: xov1plusxeqvd 13459 fz1isolem 14426 trireciplem 15828 bpoly0 16016 bpoly1 16017 pzriprng1ALT 21406 blcvx 24686 xrhmeo 24844 htpycom 24875 reparphti 24896 reparphtiOLD 24897 pcorevcl 24925 pcorevlem 24926 pi1xfrcnv 24957 vitalilem4 25512 vitalilem5 25513 dvef 25884 dvlipcn 25899 vieta1lem2 26219 dvtaylp 26278 taylthlem2 26282 taylthlem2OLD 26283 tanregt0 26448 dvlog2lem 26561 logtayl 26569 atanlogaddlem 26823 leibpi 26852 scvxcvx 26896 emcllem7 26912 lgamgulmlem2 26940 rpvmasum 27437 brbtwn2 28832 axsegconlem1 28844 ax5seglem4 28859 axpaschlem 28867 axlowdimlem6 28874 axeuclid 28890 axcontlem2 28892 axcontlem4 28894 axcontlem8 28898 elntg2 28912 constrdircl 33755 constrimcl 33760 constrabscl 33768 2sqr3minply 33770 cvxpconn 35229 cvxsconn 35230 sinccvglem 35659 areacirclem4 37705 lcmineqlem3 42019 lcmineqlem12 42028 irrapxlem2 42811 pell1qr1 42859 jm2.18 42977 stoweidlem41 46039 stoweidlem45 46043 stirlinglem1 46072 line2 48741 line2x 48743 amgmwlem 49791 |
| Copyright terms: Public domain | W3C validator |