Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1m0e1 | Structured version Visualization version GIF version |
Description: 1 - 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
1m0e1 | ⊢ (1 − 0) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10860 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | subid1i 11223 | 1 ⊢ (1 − 0) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7255 0cc0 10802 1c1 10803 − cmin 11135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 |
This theorem is referenced by: xov1plusxeqvd 13159 fz1isolem 14103 trireciplem 15502 bpoly0 15688 bpoly1 15689 blcvx 23867 xrhmeo 24015 htpycom 24045 reparphti 24066 pcorevcl 24094 pcorevlem 24095 pi1xfrcnv 24126 vitalilem4 24680 vitalilem5 24681 dvef 25049 dvlipcn 25063 vieta1lem2 25376 dvtaylp 25434 taylthlem2 25438 tanregt0 25600 dvlog2lem 25712 logtayl 25720 atanlogaddlem 25968 leibpi 25997 scvxcvx 26040 emcllem7 26056 lgamgulmlem2 26084 rpvmasum 26579 brbtwn2 27176 axsegconlem1 27188 ax5seglem4 27203 axpaschlem 27211 axlowdimlem6 27218 axeuclid 27234 axcontlem2 27236 axcontlem4 27238 axcontlem8 27242 elntg2 27256 cvxpconn 33104 cvxsconn 33105 sinccvglem 33530 areacirclem4 35795 lcmineqlem3 39967 lcmineqlem12 39976 irrapxlem2 40561 pell1qr1 40609 jm2.18 40726 stoweidlem41 43472 stoweidlem45 43476 stirlinglem1 43505 difmodm1lt 45756 line2 45986 line2x 45988 amgmwlem 46392 |
Copyright terms: Public domain | W3C validator |