| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1m0e1 | Structured version Visualization version GIF version | ||
| Description: 1 - 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 1m0e1 | ⊢ (1 − 0) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11075 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | subid1i 11444 | 1 ⊢ (1 − 0) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7355 0cc0 11017 1c1 11018 − cmin 11355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-ltxr 11162 df-sub 11357 |
| This theorem is referenced by: xov1plusxeqvd 13405 fz1isolem 14375 trireciplem 15776 bpoly0 15964 bpoly1 15965 pzriprng1ALT 21442 blcvx 24733 xrhmeo 24891 htpycom 24922 reparphti 24943 reparphtiOLD 24944 pcorevcl 24972 pcorevlem 24973 pi1xfrcnv 25004 vitalilem4 25559 vitalilem5 25560 dvef 25931 dvlipcn 25946 vieta1lem2 26266 dvtaylp 26325 taylthlem2 26329 taylthlem2OLD 26330 tanregt0 26495 dvlog2lem 26608 logtayl 26616 atanlogaddlem 26870 leibpi 26899 scvxcvx 26943 emcllem7 26959 lgamgulmlem2 26987 rpvmasum 27484 brbtwn2 28904 axsegconlem1 28916 ax5seglem4 28931 axpaschlem 28939 axlowdimlem6 28946 axeuclid 28962 axcontlem2 28964 axcontlem4 28966 axcontlem8 28970 elntg2 28984 constrdircl 33850 constrimcl 33855 constrabscl 33863 2sqr3minply 33865 cvxpconn 35358 cvxsconn 35359 sinccvglem 35788 areacirclem4 37824 lcmineqlem3 42197 lcmineqlem12 42206 irrapxlem2 42980 pell1qr1 43028 jm2.18 43145 stoweidlem41 46201 stoweidlem45 46205 stirlinglem1 46234 line2 48914 line2x 48916 amgmwlem 49963 |
| Copyright terms: Public domain | W3C validator |