Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1m0e1 | Structured version Visualization version GIF version |
Description: 1 - 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
1m0e1 | ⊢ (1 − 0) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10938 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | subid1i 11302 | 1 ⊢ (1 − 0) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7284 0cc0 10880 1c1 10881 − cmin 11214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-ltxr 11023 df-sub 11216 |
This theorem is referenced by: xov1plusxeqvd 13239 fz1isolem 14184 trireciplem 15583 bpoly0 15769 bpoly1 15770 blcvx 23970 xrhmeo 24118 htpycom 24148 reparphti 24169 pcorevcl 24197 pcorevlem 24198 pi1xfrcnv 24229 vitalilem4 24784 vitalilem5 24785 dvef 25153 dvlipcn 25167 vieta1lem2 25480 dvtaylp 25538 taylthlem2 25542 tanregt0 25704 dvlog2lem 25816 logtayl 25824 atanlogaddlem 26072 leibpi 26101 scvxcvx 26144 emcllem7 26160 lgamgulmlem2 26188 rpvmasum 26683 brbtwn2 27282 axsegconlem1 27294 ax5seglem4 27309 axpaschlem 27317 axlowdimlem6 27324 axeuclid 27340 axcontlem2 27342 axcontlem4 27344 axcontlem8 27348 elntg2 27362 cvxpconn 33213 cvxsconn 33214 sinccvglem 33639 areacirclem4 35877 lcmineqlem3 40046 lcmineqlem12 40055 irrapxlem2 40652 pell1qr1 40700 jm2.18 40817 stoweidlem41 43589 stoweidlem45 43593 stirlinglem1 43622 difmodm1lt 45879 line2 46109 line2x 46111 amgmwlem 46517 |
Copyright terms: Public domain | W3C validator |