| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1m0e1 | Structured version Visualization version GIF version | ||
| Description: 1 - 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 1m0e1 | ⊢ (1 − 0) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11059 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | subid1i 11428 | 1 ⊢ (1 − 0) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7341 0cc0 11001 1c1 11002 − cmin 11339 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 df-sub 11341 |
| This theorem is referenced by: xov1plusxeqvd 13393 fz1isolem 14363 trireciplem 15764 bpoly0 15952 bpoly1 15953 pzriprng1ALT 21428 blcvx 24708 xrhmeo 24866 htpycom 24897 reparphti 24918 reparphtiOLD 24919 pcorevcl 24947 pcorevlem 24948 pi1xfrcnv 24979 vitalilem4 25534 vitalilem5 25535 dvef 25906 dvlipcn 25921 vieta1lem2 26241 dvtaylp 26300 taylthlem2 26304 taylthlem2OLD 26305 tanregt0 26470 dvlog2lem 26583 logtayl 26591 atanlogaddlem 26845 leibpi 26874 scvxcvx 26918 emcllem7 26934 lgamgulmlem2 26962 rpvmasum 27459 brbtwn2 28878 axsegconlem1 28890 ax5seglem4 28905 axpaschlem 28913 axlowdimlem6 28920 axeuclid 28936 axcontlem2 28938 axcontlem4 28940 axcontlem8 28944 elntg2 28958 constrdircl 33770 constrimcl 33775 constrabscl 33783 2sqr3minply 33785 cvxpconn 35278 cvxsconn 35279 sinccvglem 35708 areacirclem4 37751 lcmineqlem3 42064 lcmineqlem12 42073 irrapxlem2 42856 pell1qr1 42904 jm2.18 43021 stoweidlem41 46079 stoweidlem45 46083 stirlinglem1 46112 line2 48784 line2x 48786 amgmwlem 49834 |
| Copyright terms: Public domain | W3C validator |