| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemn2a | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma N of [Crawley] p. 121. (Contributed by NM, 24-Feb-2014.) |
| Ref | Expression |
|---|---|
| cdlemn2a.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemn2a.l | ⊢ ≤ = (le‘𝐾) |
| cdlemn2a.j | ⊢ ∨ = (join‘𝐾) |
| cdlemn2a.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemn2a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemn2a.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdlemn2a.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| cdlemn2a.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| cdlemn2a.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| cdlemn2a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| cdlemn2a.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| cdlemn2a.f | ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑄) = 𝑆) |
| Ref | Expression |
|---|---|
| cdlemn2a | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → (𝑁‘{〈𝐹, 𝑂〉}) ⊆ (𝐼‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | simp21 1207 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | |
| 3 | simp22 1208 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) | |
| 4 | cdlemn2a.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 5 | cdlemn2a.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | cdlemn2a.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | cdlemn2a.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 8 | cdlemn2a.f | . . . . 5 ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑄) = 𝑆) | |
| 9 | 4, 5, 6, 7, 8 | ltrniotacl 40699 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |
| 10 | 1, 2, 3, 9 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → 𝐹 ∈ 𝑇) |
| 11 | cdlemn2a.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 12 | cdlemn2a.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 13 | cdlemn2a.o | . . . 4 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 14 | cdlemn2a.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 15 | cdlemn2a.i | . . . 4 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 16 | cdlemn2a.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 17 | 11, 6, 7, 12, 13, 14, 15, 16 | dib1dim2 41288 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐼‘(𝑅‘𝐹)) = (𝑁‘{〈𝐹, 𝑂〉})) |
| 18 | 1, 10, 17 | syl2anc 584 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → (𝐼‘(𝑅‘𝐹)) = (𝑁‘{〈𝐹, 𝑂〉})) |
| 19 | cdlemn2a.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 20 | 11, 4, 19, 5, 6, 7, 12, 8 | cdlemn2 41315 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → (𝑅‘𝐹) ≤ 𝑋) |
| 21 | 11, 6, 7, 12 | trlcl 40284 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ 𝐵) |
| 22 | 1, 10, 21 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → (𝑅‘𝐹) ∈ 𝐵) |
| 23 | 4, 6, 7, 12 | trlle 40304 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ≤ 𝑊) |
| 24 | 1, 10, 23 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → (𝑅‘𝐹) ≤ 𝑊) |
| 25 | simp23 1209 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) | |
| 26 | 11, 4, 6, 15 | dibord 41279 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑅‘𝐹) ∈ 𝐵 ∧ (𝑅‘𝐹) ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ((𝐼‘(𝑅‘𝐹)) ⊆ (𝐼‘𝑋) ↔ (𝑅‘𝐹) ≤ 𝑋)) |
| 27 | 1, 22, 24, 25, 26 | syl121anc 1377 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → ((𝐼‘(𝑅‘𝐹)) ⊆ (𝐼‘𝑋) ↔ (𝑅‘𝐹) ≤ 𝑋)) |
| 28 | 20, 27 | mpbird 257 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → (𝐼‘(𝑅‘𝐹)) ⊆ (𝐼‘𝑋)) |
| 29 | 18, 28 | eqsstrrd 3966 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ 𝑆 ≤ (𝑄 ∨ 𝑋)) → (𝑁‘{〈𝐹, 𝑂〉}) ⊆ (𝐼‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 {csn 4575 〈cop 4581 class class class wbr 5093 ↦ cmpt 5174 I cid 5513 ↾ cres 5621 ‘cfv 6486 ℩crio 7308 (class class class)co 7352 Basecbs 17122 lecple 17170 joincjn 18219 LSpanclspn 20906 Atomscatm 39383 HLchlt 39470 LHypclh 40104 LTrncltrn 40221 trLctrl 40278 DVecHcdvh 41198 DIsoBcdib 41258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-riotaBAD 39073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-undef 8209 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-0g 17347 df-proset 18202 df-poset 18221 df-plt 18236 df-lub 18252 df-glb 18253 df-join 18254 df-meet 18255 df-p0 18331 df-p1 18332 df-lat 18340 df-clat 18407 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-sbg 18853 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-drng 20648 df-lmod 20797 df-lss 20867 df-lsp 20907 df-lvec 21039 df-oposet 39296 df-ol 39298 df-oml 39299 df-covers 39386 df-ats 39387 df-atl 39418 df-cvlat 39442 df-hlat 39471 df-llines 39618 df-lplanes 39619 df-lvols 39620 df-lines 39621 df-psubsp 39623 df-pmap 39624 df-padd 39916 df-lhyp 40108 df-laut 40109 df-ldil 40224 df-ltrn 40225 df-trl 40279 df-tendo 40875 df-edring 40877 df-disoa 41149 df-dvech 41199 df-dib 41259 |
| This theorem is referenced by: cdlemn5pre 41320 |
| Copyright terms: Public domain | W3C validator |