Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph Structured version   Visualization version   GIF version

Theorem eldioph 39629
 Description: Condition for a set to be Diophantine (unpacking existential quantifier). (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
eldioph ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑡,𝑁,𝑢   𝑡,𝐾,𝑢   𝑡,𝑃,𝑢

Proof of Theorem eldioph
Dummy variables 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → 𝑁 ∈ ℕ0)
2 simp2 1134 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → 𝐾 ∈ (ℤ𝑁))
3 simp3 1135 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → 𝑃 ∈ (mzPoly‘(1...𝐾)))
4 eqidd 2823 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)})
5 fveq1 6651 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝𝑢) = (𝑃𝑢))
65eqeq1d 2824 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑝𝑢) = 0 ↔ (𝑃𝑢) = 0))
76anbi2d 631 . . . . . . 7 (𝑝 = 𝑃 → ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) ↔ (𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)))
87rexbidv 3283 . . . . . 6 (𝑝 = 𝑃 → (∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) ↔ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)))
98abbidv 2886 . . . . 5 (𝑝 = 𝑃 → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)})
109rspceeqv 3613 . . . 4 ((𝑃 ∈ (mzPoly‘(1...𝐾)) ∧ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)}) → ∃𝑝 ∈ (mzPoly‘(1...𝐾)){𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
113, 4, 10syl2anc 587 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → ∃𝑝 ∈ (mzPoly‘(1...𝐾)){𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
12 oveq2 7148 . . . . . 6 (𝑘 = 𝐾 → (1...𝑘) = (1...𝐾))
1312fveq2d 6656 . . . . 5 (𝑘 = 𝐾 → (mzPoly‘(1...𝑘)) = (mzPoly‘(1...𝐾)))
1412oveq2d 7156 . . . . . . . 8 (𝑘 = 𝐾 → (ℕ0m (1...𝑘)) = (ℕ0m (1...𝐾)))
1514rexeqdv 3393 . . . . . . 7 (𝑘 = 𝐾 → (∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) ↔ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)))
1615abbidv 2886 . . . . . 6 (𝑘 = 𝐾 → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
1716eqeq2d 2833 . . . . 5 (𝑘 = 𝐾 → ({𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ↔ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
1813, 17rexeqbidv 3383 . . . 4 (𝑘 = 𝐾 → (∃𝑝 ∈ (mzPoly‘(1...𝑘)){𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ↔ ∃𝑝 ∈ (mzPoly‘(1...𝐾)){𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
1918rspcev 3598 . . 3 ((𝐾 ∈ (ℤ𝑁) ∧ ∃𝑝 ∈ (mzPoly‘(1...𝐾)){𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) → ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘)){𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
202, 11, 19syl2anc 587 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘)){𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
21 eldiophb 39628 . 2 ({𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘)){𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
221, 20, 21sylanbrc 586 1 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2114  {cab 2800  ∃wrex 3131   ↾ cres 5534  ‘cfv 6334  (class class class)co 7140   ↑m cmap 8393  0cc0 10526  1c1 10527  ℕ0cn0 11885  ℤ≥cuz 12231  ...cfz 12885  mzPolycmzp 39593  Diophcdioph 39626 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-addcl 10586  ax-pre-lttri 10600  ax-pre-lttrn 10601 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-dioph 39627 This theorem is referenced by:  eldioph2  39633  eq0rabdioph  39647
 Copyright terms: Public domain W3C validator