Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph Structured version   Visualization version   GIF version

Theorem eldioph 38291
 Description: Condition for a set to be Diophantine (unpacking existential quantifier). (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
eldioph ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑡,𝑁,𝑢   𝑡,𝐾,𝑢   𝑡,𝑃,𝑢

Proof of Theorem eldioph
Dummy variables 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1127 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → 𝑁 ∈ ℕ0)
2 simp2 1128 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → 𝐾 ∈ (ℤ𝑁))
3 simp3 1129 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → 𝑃 ∈ (mzPoly‘(1...𝐾)))
4 eqidd 2779 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)})
5 fveq1 6447 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝𝑢) = (𝑃𝑢))
65eqeq1d 2780 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑝𝑢) = 0 ↔ (𝑃𝑢) = 0))
76anbi2d 622 . . . . . . 7 (𝑝 = 𝑃 → ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) ↔ (𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)))
87rexbidv 3237 . . . . . 6 (𝑝 = 𝑃 → (∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) ↔ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)))
98abbidv 2906 . . . . 5 (𝑝 = 𝑃 → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)})
109rspceeqv 3529 . . . 4 ((𝑃 ∈ (mzPoly‘(1...𝐾)) ∧ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)}) → ∃𝑝 ∈ (mzPoly‘(1...𝐾)){𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
113, 4, 10syl2anc 579 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → ∃𝑝 ∈ (mzPoly‘(1...𝐾)){𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
12 oveq2 6932 . . . . . 6 (𝑘 = 𝐾 → (1...𝑘) = (1...𝐾))
1312fveq2d 6452 . . . . 5 (𝑘 = 𝐾 → (mzPoly‘(1...𝑘)) = (mzPoly‘(1...𝐾)))
1412oveq2d 6940 . . . . . . . 8 (𝑘 = 𝐾 → (ℕ0𝑚 (1...𝑘)) = (ℕ0𝑚 (1...𝐾)))
1514rexeqdv 3341 . . . . . . 7 (𝑘 = 𝐾 → (∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) ↔ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)))
1615abbidv 2906 . . . . . 6 (𝑘 = 𝐾 → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
1716eqeq2d 2788 . . . . 5 (𝑘 = 𝐾 → ({𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ↔ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
1813, 17rexeqbidv 3327 . . . 4 (𝑘 = 𝐾 → (∃𝑝 ∈ (mzPoly‘(1...𝑘)){𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ↔ ∃𝑝 ∈ (mzPoly‘(1...𝐾)){𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
1918rspcev 3511 . . 3 ((𝐾 ∈ (ℤ𝑁) ∧ ∃𝑝 ∈ (mzPoly‘(1...𝐾)){𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) → ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘)){𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
202, 11, 19syl2anc 579 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘)){𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
21 eldiophb 38290 . 2 ({𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘)){𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
221, 20, 21sylanbrc 578 1 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   ∧ w3a 1071   = wceq 1601   ∈ wcel 2107  {cab 2763  ∃wrex 3091   ↾ cres 5359  ‘cfv 6137  (class class class)co 6924   ↑𝑚 cmap 8142  0cc0 10274  1c1 10275  ℕ0cn0 11646  ℤ≥cuz 11996  ...cfz 12647  mzPolycmzp 38255  Diophcdioph 38288 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-addcl 10334  ax-pre-lttri 10348  ax-pre-lttrn 10349 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-neg 10611  df-nn 11379  df-n0 11647  df-z 11733  df-uz 11997  df-fz 12648  df-dioph 38289 This theorem is referenced by:  eldioph2  38295  eq0rabdioph  38310
 Copyright terms: Public domain W3C validator