Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph Structured version   Visualization version   GIF version

Theorem eldioph 37999
Description: Condition for a set to be Diophantine (unpacking existential quantifier). (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
eldioph ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑡,𝑁,𝑢   𝑡,𝐾,𝑢   𝑡,𝑃,𝑢

Proof of Theorem eldioph
Dummy variables 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1166 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → 𝑁 ∈ ℕ0)
2 simp2 1167 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → 𝐾 ∈ (ℤ𝑁))
3 simp3 1168 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → 𝑃 ∈ (mzPoly‘(1...𝐾)))
4 eqidd 2766 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)})
5 fveq1 6374 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝𝑢) = (𝑃𝑢))
65eqeq1d 2767 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑝𝑢) = 0 ↔ (𝑃𝑢) = 0))
76anbi2d 622 . . . . . . 7 (𝑝 = 𝑃 → ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) ↔ (𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)))
87rexbidv 3199 . . . . . 6 (𝑝 = 𝑃 → (∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) ↔ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)))
98abbidv 2884 . . . . 5 (𝑝 = 𝑃 → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)})
109rspceeqv 3479 . . . 4 ((𝑃 ∈ (mzPoly‘(1...𝐾)) ∧ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)}) → ∃𝑝 ∈ (mzPoly‘(1...𝐾)){𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
113, 4, 10syl2anc 579 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → ∃𝑝 ∈ (mzPoly‘(1...𝐾)){𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
12 oveq2 6850 . . . . . 6 (𝑘 = 𝐾 → (1...𝑘) = (1...𝐾))
1312fveq2d 6379 . . . . 5 (𝑘 = 𝐾 → (mzPoly‘(1...𝑘)) = (mzPoly‘(1...𝐾)))
1412oveq2d 6858 . . . . . . . 8 (𝑘 = 𝐾 → (ℕ0𝑚 (1...𝑘)) = (ℕ0𝑚 (1...𝐾)))
1514rexeqdv 3293 . . . . . . 7 (𝑘 = 𝐾 → (∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) ↔ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)))
1615abbidv 2884 . . . . . 6 (𝑘 = 𝐾 → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
1716eqeq2d 2775 . . . . 5 (𝑘 = 𝐾 → ({𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ↔ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
1813, 17rexeqbidv 3301 . . . 4 (𝑘 = 𝐾 → (∃𝑝 ∈ (mzPoly‘(1...𝑘)){𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ↔ ∃𝑝 ∈ (mzPoly‘(1...𝐾)){𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
1918rspcev 3461 . . 3 ((𝐾 ∈ (ℤ𝑁) ∧ ∃𝑝 ∈ (mzPoly‘(1...𝐾)){𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) → ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘)){𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
202, 11, 19syl2anc 579 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘)){𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
21 eldiophb 37998 . 2 ({𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘)){𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
221, 20, 21sylanbrc 578 1 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  {cab 2751  wrex 3056  cres 5279  cfv 6068  (class class class)co 6842  𝑚 cmap 8060  0cc0 10189  1c1 10190  0cn0 11538  cuz 11886  ...cfz 12533  mzPolycmzp 37963  Diophcdioph 37996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-addcl 10249  ax-pre-lttri 10263  ax-pre-lttrn 10264
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-neg 10523  df-nn 11275  df-n0 11539  df-z 11625  df-uz 11887  df-fz 12534  df-dioph 37997
This theorem is referenced by:  eldioph2  38003  eq0rabdioph  38018
  Copyright terms: Public domain W3C validator