Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fimgmcyclem Structured version   Visualization version   GIF version

Theorem fimgmcyclem 42521
Description: Lemma for fimgmcyc 42522. (Contributed by SN, 7-Jul-2025.)
Hypothesis
Ref Expression
fimgmcyclem.s (𝜑 → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
Assertion
Ref Expression
fimgmcyclem (𝜑 → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
Distinct variable groups:   · ,𝑜,𝑞   𝐴,𝑜,𝑞   𝜑,𝑜,𝑞

Proof of Theorem fimgmcyclem
Dummy variables 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝜑 ∧ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
2 rexcom 3266 . . . . . 6 (∃𝑟 ∈ ℕ ∃𝑝 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)) ↔ ∃𝑝 ∈ ℕ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)))
3 eqcom 2736 . . . . . . . 8 ((𝑟 · 𝐴) = (𝑝 · 𝐴) ↔ (𝑝 · 𝐴) = (𝑟 · 𝐴))
43anbi2i 623 . . . . . . 7 ((𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)) ↔ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴)))
542rexbii 3109 . . . . . 6 (∃𝑝 ∈ ℕ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)) ↔ ∃𝑝 ∈ ℕ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴)))
62, 5sylbb 219 . . . . 5 (∃𝑟 ∈ ℕ ∃𝑝 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)) → ∃𝑝 ∈ ℕ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴)))
7 breq2 5111 . . . . . . . 8 (𝑜 = 𝑟 → (𝑝 < 𝑜𝑝 < 𝑟))
8 oveq1 7394 . . . . . . . . 9 (𝑜 = 𝑟 → (𝑜 · 𝐴) = (𝑟 · 𝐴))
98eqeq1d 2731 . . . . . . . 8 (𝑜 = 𝑟 → ((𝑜 · 𝐴) = (𝑝 · 𝐴) ↔ (𝑟 · 𝐴) = (𝑝 · 𝐴)))
107, 9anbi12d 632 . . . . . . 7 (𝑜 = 𝑟 → ((𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)) ↔ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴))))
1110rexbidv 3157 . . . . . 6 (𝑜 = 𝑟 → (∃𝑝 ∈ ℕ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)) ↔ ∃𝑝 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴))))
1211cbvrexvw 3216 . . . . 5 (∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)) ↔ ∃𝑟 ∈ ℕ ∃𝑝 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)))
13 breq1 5110 . . . . . . . 8 (𝑜 = 𝑝 → (𝑜 < 𝑟𝑝 < 𝑟))
14 oveq1 7394 . . . . . . . . 9 (𝑜 = 𝑝 → (𝑜 · 𝐴) = (𝑝 · 𝐴))
1514eqeq1d 2731 . . . . . . . 8 (𝑜 = 𝑝 → ((𝑜 · 𝐴) = (𝑟 · 𝐴) ↔ (𝑝 · 𝐴) = (𝑟 · 𝐴)))
1613, 15anbi12d 632 . . . . . . 7 (𝑜 = 𝑝 → ((𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)) ↔ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴))))
1716rexbidv 3157 . . . . . 6 (𝑜 = 𝑝 → (∃𝑟 ∈ ℕ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)) ↔ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴))))
1817cbvrexvw 3216 . . . . 5 (∃𝑜 ∈ ℕ ∃𝑟 ∈ ℕ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)) ↔ ∃𝑝 ∈ ℕ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴)))
196, 12, 183imtr4i 292 . . . 4 (∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)) → ∃𝑜 ∈ ℕ ∃𝑟 ∈ ℕ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)))
20 breq1 5110 . . . . . . 7 (𝑞 = 𝑝 → (𝑞 < 𝑜𝑝 < 𝑜))
21 oveq1 7394 . . . . . . . 8 (𝑞 = 𝑝 → (𝑞 · 𝐴) = (𝑝 · 𝐴))
2221eqeq2d 2740 . . . . . . 7 (𝑞 = 𝑝 → ((𝑜 · 𝐴) = (𝑞 · 𝐴) ↔ (𝑜 · 𝐴) = (𝑝 · 𝐴)))
2320, 22anbi12d 632 . . . . . 6 (𝑞 = 𝑝 → ((𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴))))
2423cbvrexvw 3216 . . . . 5 (∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑝 ∈ ℕ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)))
2524rexbii 3076 . . . 4 (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)))
26 breq2 5111 . . . . . . 7 (𝑞 = 𝑟 → (𝑜 < 𝑞𝑜 < 𝑟))
27 oveq1 7394 . . . . . . . 8 (𝑞 = 𝑟 → (𝑞 · 𝐴) = (𝑟 · 𝐴))
2827eqeq2d 2740 . . . . . . 7 (𝑞 = 𝑟 → ((𝑜 · 𝐴) = (𝑞 · 𝐴) ↔ (𝑜 · 𝐴) = (𝑟 · 𝐴)))
2926, 28anbi12d 632 . . . . . 6 (𝑞 = 𝑟 → ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴))))
3029cbvrexvw 3216 . . . . 5 (∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑟 ∈ ℕ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)))
3130rexbii 3076 . . . 4 (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑜 ∈ ℕ ∃𝑟 ∈ ℕ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)))
3219, 25, 313imtr4i 292 . . 3 (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
3332adantl 481 . 2 ((𝜑 ∧ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
34 fimgmcyclem.s . . 3 (𝜑 → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
35 simpl 482 . . . . . . . . 9 ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → 𝑜 ∈ ℕ)
3635nnred 12201 . . . . . . . 8 ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → 𝑜 ∈ ℝ)
37 simpr 484 . . . . . . . . 9 ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → 𝑞 ∈ ℕ)
3837nnred 12201 . . . . . . . 8 ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → 𝑞 ∈ ℝ)
3936, 38lttri2d 11313 . . . . . . 7 ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → (𝑜𝑞 ↔ (𝑜 < 𝑞𝑞 < 𝑜)))
4039anbi1d 631 . . . . . 6 ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((𝑜𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ((𝑜 < 𝑞𝑞 < 𝑜) ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
41 andir 1010 . . . . . 6 (((𝑜 < 𝑞𝑞 < 𝑜) ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
4240, 41bitrdi 287 . . . . 5 ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((𝑜𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))))
43422rexbiia 3198 . . . 4 (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
44 r19.43 3101 . . . . 5 (∃𝑞 ∈ ℕ ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) ↔ (∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
4544rexbii 3076 . . . 4 (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) ↔ ∃𝑜 ∈ ℕ (∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
46 r19.43 3101 . . . 4 (∃𝑜 ∈ ℕ (∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) ↔ (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
4743, 45, 463bitri 297 . . 3 (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
4834, 47sylib 218 . 2 (𝜑 → (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
491, 33, 48mpjaodan 960 1 (𝜑 → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5107  (class class class)co 7387   < clt 11208  cn 12186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-i2m1 11136  ax-1ne0 11137  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-nn 12187
This theorem is referenced by:  fimgmcyc  42522
  Copyright terms: Public domain W3C validator