| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. 2
⊢ ((𝜑 ∧ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) |
| 2 | | rexcom 3290 |
. . . . . 6
⊢
(∃𝑟 ∈
ℕ ∃𝑝 ∈
ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)) ↔ ∃𝑝 ∈ ℕ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴))) |
| 3 | | eqcom 2744 |
. . . . . . . 8
⊢ ((𝑟 · 𝐴) = (𝑝 · 𝐴) ↔ (𝑝 · 𝐴) = (𝑟 · 𝐴)) |
| 4 | 3 | anbi2i 623 |
. . . . . . 7
⊢ ((𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)) ↔ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴))) |
| 5 | 4 | 2rexbii 3129 |
. . . . . 6
⊢
(∃𝑝 ∈
ℕ ∃𝑟 ∈
ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)) ↔ ∃𝑝 ∈ ℕ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴))) |
| 6 | 2, 5 | sylbb 219 |
. . . . 5
⊢
(∃𝑟 ∈
ℕ ∃𝑝 ∈
ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)) → ∃𝑝 ∈ ℕ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴))) |
| 7 | | breq2 5147 |
. . . . . . . 8
⊢ (𝑜 = 𝑟 → (𝑝 < 𝑜 ↔ 𝑝 < 𝑟)) |
| 8 | | oveq1 7438 |
. . . . . . . . 9
⊢ (𝑜 = 𝑟 → (𝑜 · 𝐴) = (𝑟 · 𝐴)) |
| 9 | 8 | eqeq1d 2739 |
. . . . . . . 8
⊢ (𝑜 = 𝑟 → ((𝑜 · 𝐴) = (𝑝 · 𝐴) ↔ (𝑟 · 𝐴) = (𝑝 · 𝐴))) |
| 10 | 7, 9 | anbi12d 632 |
. . . . . . 7
⊢ (𝑜 = 𝑟 → ((𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)) ↔ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)))) |
| 11 | 10 | rexbidv 3179 |
. . . . . 6
⊢ (𝑜 = 𝑟 → (∃𝑝 ∈ ℕ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)) ↔ ∃𝑝 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)))) |
| 12 | 11 | cbvrexvw 3238 |
. . . . 5
⊢
(∃𝑜 ∈
ℕ ∃𝑝 ∈
ℕ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)) ↔ ∃𝑟 ∈ ℕ ∃𝑝 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴))) |
| 13 | | breq1 5146 |
. . . . . . . 8
⊢ (𝑜 = 𝑝 → (𝑜 < 𝑟 ↔ 𝑝 < 𝑟)) |
| 14 | | oveq1 7438 |
. . . . . . . . 9
⊢ (𝑜 = 𝑝 → (𝑜 · 𝐴) = (𝑝 · 𝐴)) |
| 15 | 14 | eqeq1d 2739 |
. . . . . . . 8
⊢ (𝑜 = 𝑝 → ((𝑜 · 𝐴) = (𝑟 · 𝐴) ↔ (𝑝 · 𝐴) = (𝑟 · 𝐴))) |
| 16 | 13, 15 | anbi12d 632 |
. . . . . . 7
⊢ (𝑜 = 𝑝 → ((𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)) ↔ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴)))) |
| 17 | 16 | rexbidv 3179 |
. . . . . 6
⊢ (𝑜 = 𝑝 → (∃𝑟 ∈ ℕ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)) ↔ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴)))) |
| 18 | 17 | cbvrexvw 3238 |
. . . . 5
⊢
(∃𝑜 ∈
ℕ ∃𝑟 ∈
ℕ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)) ↔ ∃𝑝 ∈ ℕ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴))) |
| 19 | 6, 12, 18 | 3imtr4i 292 |
. . . 4
⊢
(∃𝑜 ∈
ℕ ∃𝑝 ∈
ℕ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)) → ∃𝑜 ∈ ℕ ∃𝑟 ∈ ℕ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴))) |
| 20 | | breq1 5146 |
. . . . . . 7
⊢ (𝑞 = 𝑝 → (𝑞 < 𝑜 ↔ 𝑝 < 𝑜)) |
| 21 | | oveq1 7438 |
. . . . . . . 8
⊢ (𝑞 = 𝑝 → (𝑞 · 𝐴) = (𝑝 · 𝐴)) |
| 22 | 21 | eqeq2d 2748 |
. . . . . . 7
⊢ (𝑞 = 𝑝 → ((𝑜 · 𝐴) = (𝑞 · 𝐴) ↔ (𝑜 · 𝐴) = (𝑝 · 𝐴))) |
| 23 | 20, 22 | anbi12d 632 |
. . . . . 6
⊢ (𝑞 = 𝑝 → ((𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)))) |
| 24 | 23 | cbvrexvw 3238 |
. . . . 5
⊢
(∃𝑞 ∈
ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑝 ∈ ℕ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴))) |
| 25 | 24 | rexbii 3094 |
. . . 4
⊢
(∃𝑜 ∈
ℕ ∃𝑞 ∈
ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴))) |
| 26 | | breq2 5147 |
. . . . . . 7
⊢ (𝑞 = 𝑟 → (𝑜 < 𝑞 ↔ 𝑜 < 𝑟)) |
| 27 | | oveq1 7438 |
. . . . . . . 8
⊢ (𝑞 = 𝑟 → (𝑞 · 𝐴) = (𝑟 · 𝐴)) |
| 28 | 27 | eqeq2d 2748 |
. . . . . . 7
⊢ (𝑞 = 𝑟 → ((𝑜 · 𝐴) = (𝑞 · 𝐴) ↔ (𝑜 · 𝐴) = (𝑟 · 𝐴))) |
| 29 | 26, 28 | anbi12d 632 |
. . . . . 6
⊢ (𝑞 = 𝑟 → ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)))) |
| 30 | 29 | cbvrexvw 3238 |
. . . . 5
⊢
(∃𝑞 ∈
ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑟 ∈ ℕ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴))) |
| 31 | 30 | rexbii 3094 |
. . . 4
⊢
(∃𝑜 ∈
ℕ ∃𝑞 ∈
ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑜 ∈ ℕ ∃𝑟 ∈ ℕ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴))) |
| 32 | 19, 25, 31 | 3imtr4i 292 |
. . 3
⊢
(∃𝑜 ∈
ℕ ∃𝑞 ∈
ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) |
| 33 | 32 | adantl 481 |
. 2
⊢ ((𝜑 ∧ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) |
| 34 | | fimgmcyclem.s |
. . 3
⊢ (𝜑 → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 ≠ 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) |
| 35 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → 𝑜 ∈
ℕ) |
| 36 | 35 | nnred 12281 |
. . . . . . . 8
⊢ ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → 𝑜 ∈
ℝ) |
| 37 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → 𝑞 ∈
ℕ) |
| 38 | 37 | nnred 12281 |
. . . . . . . 8
⊢ ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → 𝑞 ∈
ℝ) |
| 39 | 36, 38 | lttri2d 11400 |
. . . . . . 7
⊢ ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → (𝑜 ≠ 𝑞 ↔ (𝑜 < 𝑞 ∨ 𝑞 < 𝑜))) |
| 40 | 39 | anbi1d 631 |
. . . . . 6
⊢ ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((𝑜 ≠ 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ((𝑜 < 𝑞 ∨ 𝑞 < 𝑜) ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))) |
| 41 | | andir 1011 |
. . . . . 6
⊢ (((𝑜 < 𝑞 ∨ 𝑞 < 𝑜) ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))) |
| 42 | 40, 41 | bitrdi 287 |
. . . . 5
⊢ ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((𝑜 ≠ 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))) |
| 43 | 42 | 2rexbiia 3218 |
. . . 4
⊢
(∃𝑜 ∈
ℕ ∃𝑞 ∈
ℕ (𝑜 ≠ 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))) |
| 44 | | r19.43 3122 |
. . . . 5
⊢
(∃𝑞 ∈
ℕ ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) ↔ (∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))) |
| 45 | 44 | rexbii 3094 |
. . . 4
⊢
(∃𝑜 ∈
ℕ ∃𝑞 ∈
ℕ ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) ↔ ∃𝑜 ∈ ℕ (∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))) |
| 46 | | r19.43 3122 |
. . . 4
⊢
(∃𝑜 ∈
ℕ (∃𝑞 ∈
ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) ↔ (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))) |
| 47 | 43, 45, 46 | 3bitri 297 |
. . 3
⊢
(∃𝑜 ∈
ℕ ∃𝑞 ∈
ℕ (𝑜 ≠ 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))) |
| 48 | 34, 47 | sylib 218 |
. 2
⊢ (𝜑 → (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))) |
| 49 | 1, 33, 48 | mpjaodan 961 |
1
⊢ (𝜑 → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) |