Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fimgmcyclem Structured version   Visualization version   GIF version

Theorem fimgmcyclem 42488
Description: Lemma for fimgmcyc 42489. (Contributed by SN, 7-Jul-2025.)
Hypothesis
Ref Expression
fimgmcyclem.s (𝜑 → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
Assertion
Ref Expression
fimgmcyclem (𝜑 → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
Distinct variable groups:   · ,𝑜,𝑞   𝐴,𝑜,𝑞   𝜑,𝑜,𝑞

Proof of Theorem fimgmcyclem
Dummy variables 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝜑 ∧ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
2 rexcom 3296 . . . . . 6 (∃𝑟 ∈ ℕ ∃𝑝 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)) ↔ ∃𝑝 ∈ ℕ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)))
3 eqcom 2747 . . . . . . . 8 ((𝑟 · 𝐴) = (𝑝 · 𝐴) ↔ (𝑝 · 𝐴) = (𝑟 · 𝐴))
43anbi2i 622 . . . . . . 7 ((𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)) ↔ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴)))
542rexbii 3135 . . . . . 6 (∃𝑝 ∈ ℕ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)) ↔ ∃𝑝 ∈ ℕ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴)))
62, 5sylbb 219 . . . . 5 (∃𝑟 ∈ ℕ ∃𝑝 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)) → ∃𝑝 ∈ ℕ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴)))
7 breq2 5170 . . . . . . . 8 (𝑜 = 𝑟 → (𝑝 < 𝑜𝑝 < 𝑟))
8 oveq1 7455 . . . . . . . . 9 (𝑜 = 𝑟 → (𝑜 · 𝐴) = (𝑟 · 𝐴))
98eqeq1d 2742 . . . . . . . 8 (𝑜 = 𝑟 → ((𝑜 · 𝐴) = (𝑝 · 𝐴) ↔ (𝑟 · 𝐴) = (𝑝 · 𝐴)))
107, 9anbi12d 631 . . . . . . 7 (𝑜 = 𝑟 → ((𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)) ↔ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴))))
1110rexbidv 3185 . . . . . 6 (𝑜 = 𝑟 → (∃𝑝 ∈ ℕ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)) ↔ ∃𝑝 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴))))
1211cbvrexvw 3244 . . . . 5 (∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)) ↔ ∃𝑟 ∈ ℕ ∃𝑝 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)))
13 breq1 5169 . . . . . . . 8 (𝑜 = 𝑝 → (𝑜 < 𝑟𝑝 < 𝑟))
14 oveq1 7455 . . . . . . . . 9 (𝑜 = 𝑝 → (𝑜 · 𝐴) = (𝑝 · 𝐴))
1514eqeq1d 2742 . . . . . . . 8 (𝑜 = 𝑝 → ((𝑜 · 𝐴) = (𝑟 · 𝐴) ↔ (𝑝 · 𝐴) = (𝑟 · 𝐴)))
1613, 15anbi12d 631 . . . . . . 7 (𝑜 = 𝑝 → ((𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)) ↔ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴))))
1716rexbidv 3185 . . . . . 6 (𝑜 = 𝑝 → (∃𝑟 ∈ ℕ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)) ↔ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴))))
1817cbvrexvw 3244 . . . . 5 (∃𝑜 ∈ ℕ ∃𝑟 ∈ ℕ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)) ↔ ∃𝑝 ∈ ℕ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴)))
196, 12, 183imtr4i 292 . . . 4 (∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)) → ∃𝑜 ∈ ℕ ∃𝑟 ∈ ℕ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)))
20 breq1 5169 . . . . . . 7 (𝑞 = 𝑝 → (𝑞 < 𝑜𝑝 < 𝑜))
21 oveq1 7455 . . . . . . . 8 (𝑞 = 𝑝 → (𝑞 · 𝐴) = (𝑝 · 𝐴))
2221eqeq2d 2751 . . . . . . 7 (𝑞 = 𝑝 → ((𝑜 · 𝐴) = (𝑞 · 𝐴) ↔ (𝑜 · 𝐴) = (𝑝 · 𝐴)))
2320, 22anbi12d 631 . . . . . 6 (𝑞 = 𝑝 → ((𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴))))
2423cbvrexvw 3244 . . . . 5 (∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑝 ∈ ℕ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)))
2524rexbii 3100 . . . 4 (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)))
26 breq2 5170 . . . . . . 7 (𝑞 = 𝑟 → (𝑜 < 𝑞𝑜 < 𝑟))
27 oveq1 7455 . . . . . . . 8 (𝑞 = 𝑟 → (𝑞 · 𝐴) = (𝑟 · 𝐴))
2827eqeq2d 2751 . . . . . . 7 (𝑞 = 𝑟 → ((𝑜 · 𝐴) = (𝑞 · 𝐴) ↔ (𝑜 · 𝐴) = (𝑟 · 𝐴)))
2926, 28anbi12d 631 . . . . . 6 (𝑞 = 𝑟 → ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴))))
3029cbvrexvw 3244 . . . . 5 (∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑟 ∈ ℕ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)))
3130rexbii 3100 . . . 4 (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑜 ∈ ℕ ∃𝑟 ∈ ℕ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)))
3219, 25, 313imtr4i 292 . . 3 (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
3332adantl 481 . 2 ((𝜑 ∧ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
34 fimgmcyclem.s . . 3 (𝜑 → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
35 simpl 482 . . . . . . . . 9 ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → 𝑜 ∈ ℕ)
3635nnred 12308 . . . . . . . 8 ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → 𝑜 ∈ ℝ)
37 simpr 484 . . . . . . . . 9 ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → 𝑞 ∈ ℕ)
3837nnred 12308 . . . . . . . 8 ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → 𝑞 ∈ ℝ)
3936, 38lttri2d 11429 . . . . . . 7 ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → (𝑜𝑞 ↔ (𝑜 < 𝑞𝑞 < 𝑜)))
4039anbi1d 630 . . . . . 6 ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((𝑜𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ((𝑜 < 𝑞𝑞 < 𝑜) ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
41 andir 1009 . . . . . 6 (((𝑜 < 𝑞𝑞 < 𝑜) ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
4240, 41bitrdi 287 . . . . 5 ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((𝑜𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))))
43422rexbiia 3224 . . . 4 (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
44 r19.43 3128 . . . . 5 (∃𝑞 ∈ ℕ ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) ↔ (∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
4544rexbii 3100 . . . 4 (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) ↔ ∃𝑜 ∈ ℕ (∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
46 r19.43 3128 . . . 4 (∃𝑜 ∈ ℕ (∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) ↔ (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
4743, 45, 463bitri 297 . . 3 (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
4834, 47sylib 218 . 2 (𝜑 → (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
491, 33, 48mpjaodan 959 1 (𝜑 → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  (class class class)co 7448   < clt 11324  cn 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-i2m1 11252  ax-1ne0 11253  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-nn 12294
This theorem is referenced by:  fimgmcyc  42489
  Copyright terms: Public domain W3C validator