Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. 2
⊢ ((𝜑 ∧ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) |
2 | | rexcom 3296 |
. . . . . 6
⊢
(∃𝑟 ∈
ℕ ∃𝑝 ∈
ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)) ↔ ∃𝑝 ∈ ℕ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴))) |
3 | | eqcom 2747 |
. . . . . . . 8
⊢ ((𝑟 · 𝐴) = (𝑝 · 𝐴) ↔ (𝑝 · 𝐴) = (𝑟 · 𝐴)) |
4 | 3 | anbi2i 622 |
. . . . . . 7
⊢ ((𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)) ↔ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴))) |
5 | 4 | 2rexbii 3135 |
. . . . . 6
⊢
(∃𝑝 ∈
ℕ ∃𝑟 ∈
ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)) ↔ ∃𝑝 ∈ ℕ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴))) |
6 | 2, 5 | sylbb 219 |
. . . . 5
⊢
(∃𝑟 ∈
ℕ ∃𝑝 ∈
ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)) → ∃𝑝 ∈ ℕ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴))) |
7 | | breq2 5170 |
. . . . . . . 8
⊢ (𝑜 = 𝑟 → (𝑝 < 𝑜 ↔ 𝑝 < 𝑟)) |
8 | | oveq1 7455 |
. . . . . . . . 9
⊢ (𝑜 = 𝑟 → (𝑜 · 𝐴) = (𝑟 · 𝐴)) |
9 | 8 | eqeq1d 2742 |
. . . . . . . 8
⊢ (𝑜 = 𝑟 → ((𝑜 · 𝐴) = (𝑝 · 𝐴) ↔ (𝑟 · 𝐴) = (𝑝 · 𝐴))) |
10 | 7, 9 | anbi12d 631 |
. . . . . . 7
⊢ (𝑜 = 𝑟 → ((𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)) ↔ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)))) |
11 | 10 | rexbidv 3185 |
. . . . . 6
⊢ (𝑜 = 𝑟 → (∃𝑝 ∈ ℕ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)) ↔ ∃𝑝 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)))) |
12 | 11 | cbvrexvw 3244 |
. . . . 5
⊢
(∃𝑜 ∈
ℕ ∃𝑝 ∈
ℕ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)) ↔ ∃𝑟 ∈ ℕ ∃𝑝 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴))) |
13 | | breq1 5169 |
. . . . . . . 8
⊢ (𝑜 = 𝑝 → (𝑜 < 𝑟 ↔ 𝑝 < 𝑟)) |
14 | | oveq1 7455 |
. . . . . . . . 9
⊢ (𝑜 = 𝑝 → (𝑜 · 𝐴) = (𝑝 · 𝐴)) |
15 | 14 | eqeq1d 2742 |
. . . . . . . 8
⊢ (𝑜 = 𝑝 → ((𝑜 · 𝐴) = (𝑟 · 𝐴) ↔ (𝑝 · 𝐴) = (𝑟 · 𝐴))) |
16 | 13, 15 | anbi12d 631 |
. . . . . . 7
⊢ (𝑜 = 𝑝 → ((𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)) ↔ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴)))) |
17 | 16 | rexbidv 3185 |
. . . . . 6
⊢ (𝑜 = 𝑝 → (∃𝑟 ∈ ℕ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)) ↔ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴)))) |
18 | 17 | cbvrexvw 3244 |
. . . . 5
⊢
(∃𝑜 ∈
ℕ ∃𝑟 ∈
ℕ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)) ↔ ∃𝑝 ∈ ℕ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴))) |
19 | 6, 12, 18 | 3imtr4i 292 |
. . . 4
⊢
(∃𝑜 ∈
ℕ ∃𝑝 ∈
ℕ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)) → ∃𝑜 ∈ ℕ ∃𝑟 ∈ ℕ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴))) |
20 | | breq1 5169 |
. . . . . . 7
⊢ (𝑞 = 𝑝 → (𝑞 < 𝑜 ↔ 𝑝 < 𝑜)) |
21 | | oveq1 7455 |
. . . . . . . 8
⊢ (𝑞 = 𝑝 → (𝑞 · 𝐴) = (𝑝 · 𝐴)) |
22 | 21 | eqeq2d 2751 |
. . . . . . 7
⊢ (𝑞 = 𝑝 → ((𝑜 · 𝐴) = (𝑞 · 𝐴) ↔ (𝑜 · 𝐴) = (𝑝 · 𝐴))) |
23 | 20, 22 | anbi12d 631 |
. . . . . 6
⊢ (𝑞 = 𝑝 → ((𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)))) |
24 | 23 | cbvrexvw 3244 |
. . . . 5
⊢
(∃𝑞 ∈
ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑝 ∈ ℕ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴))) |
25 | 24 | rexbii 3100 |
. . . 4
⊢
(∃𝑜 ∈
ℕ ∃𝑞 ∈
ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴))) |
26 | | breq2 5170 |
. . . . . . 7
⊢ (𝑞 = 𝑟 → (𝑜 < 𝑞 ↔ 𝑜 < 𝑟)) |
27 | | oveq1 7455 |
. . . . . . . 8
⊢ (𝑞 = 𝑟 → (𝑞 · 𝐴) = (𝑟 · 𝐴)) |
28 | 27 | eqeq2d 2751 |
. . . . . . 7
⊢ (𝑞 = 𝑟 → ((𝑜 · 𝐴) = (𝑞 · 𝐴) ↔ (𝑜 · 𝐴) = (𝑟 · 𝐴))) |
29 | 26, 28 | anbi12d 631 |
. . . . . 6
⊢ (𝑞 = 𝑟 → ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)))) |
30 | 29 | cbvrexvw 3244 |
. . . . 5
⊢
(∃𝑞 ∈
ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑟 ∈ ℕ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴))) |
31 | 30 | rexbii 3100 |
. . . 4
⊢
(∃𝑜 ∈
ℕ ∃𝑞 ∈
ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑜 ∈ ℕ ∃𝑟 ∈ ℕ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴))) |
32 | 19, 25, 31 | 3imtr4i 292 |
. . 3
⊢
(∃𝑜 ∈
ℕ ∃𝑞 ∈
ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) |
33 | 32 | adantl 481 |
. 2
⊢ ((𝜑 ∧ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) |
34 | | fimgmcyclem.s |
. . 3
⊢ (𝜑 → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 ≠ 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) |
35 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → 𝑜 ∈
ℕ) |
36 | 35 | nnred 12308 |
. . . . . . . 8
⊢ ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → 𝑜 ∈
ℝ) |
37 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → 𝑞 ∈
ℕ) |
38 | 37 | nnred 12308 |
. . . . . . . 8
⊢ ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → 𝑞 ∈
ℝ) |
39 | 36, 38 | lttri2d 11429 |
. . . . . . 7
⊢ ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → (𝑜 ≠ 𝑞 ↔ (𝑜 < 𝑞 ∨ 𝑞 < 𝑜))) |
40 | 39 | anbi1d 630 |
. . . . . 6
⊢ ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((𝑜 ≠ 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ((𝑜 < 𝑞 ∨ 𝑞 < 𝑜) ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))) |
41 | | andir 1009 |
. . . . . 6
⊢ (((𝑜 < 𝑞 ∨ 𝑞 < 𝑜) ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))) |
42 | 40, 41 | bitrdi 287 |
. . . . 5
⊢ ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((𝑜 ≠ 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))) |
43 | 42 | 2rexbiia 3224 |
. . . 4
⊢
(∃𝑜 ∈
ℕ ∃𝑞 ∈
ℕ (𝑜 ≠ 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))) |
44 | | r19.43 3128 |
. . . . 5
⊢
(∃𝑞 ∈
ℕ ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) ↔ (∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))) |
45 | 44 | rexbii 3100 |
. . . 4
⊢
(∃𝑜 ∈
ℕ ∃𝑞 ∈
ℕ ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) ↔ ∃𝑜 ∈ ℕ (∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))) |
46 | | r19.43 3128 |
. . . 4
⊢
(∃𝑜 ∈
ℕ (∃𝑞 ∈
ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) ↔ (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))) |
47 | 43, 45, 46 | 3bitri 297 |
. . 3
⊢
(∃𝑜 ∈
ℕ ∃𝑞 ∈
ℕ (𝑜 ≠ 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))) |
48 | 34, 47 | sylib 218 |
. 2
⊢ (𝜑 → (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))) |
49 | 1, 33, 48 | mpjaodan 959 |
1
⊢ (𝜑 → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) |