Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fimgmcyclem Structured version   Visualization version   GIF version

Theorem fimgmcyclem 42506
Description: Lemma for fimgmcyc 42507. (Contributed by SN, 7-Jul-2025.)
Hypothesis
Ref Expression
fimgmcyclem.s (𝜑 → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
Assertion
Ref Expression
fimgmcyclem (𝜑 → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
Distinct variable groups:   · ,𝑜,𝑞   𝐴,𝑜,𝑞   𝜑,𝑜,𝑞

Proof of Theorem fimgmcyclem
Dummy variables 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝜑 ∧ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
2 rexcom 3258 . . . . . 6 (∃𝑟 ∈ ℕ ∃𝑝 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)) ↔ ∃𝑝 ∈ ℕ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)))
3 eqcom 2736 . . . . . . . 8 ((𝑟 · 𝐴) = (𝑝 · 𝐴) ↔ (𝑝 · 𝐴) = (𝑟 · 𝐴))
43anbi2i 623 . . . . . . 7 ((𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)) ↔ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴)))
542rexbii 3105 . . . . . 6 (∃𝑝 ∈ ℕ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)) ↔ ∃𝑝 ∈ ℕ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴)))
62, 5sylbb 219 . . . . 5 (∃𝑟 ∈ ℕ ∃𝑝 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)) → ∃𝑝 ∈ ℕ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴)))
7 breq2 5096 . . . . . . . 8 (𝑜 = 𝑟 → (𝑝 < 𝑜𝑝 < 𝑟))
8 oveq1 7356 . . . . . . . . 9 (𝑜 = 𝑟 → (𝑜 · 𝐴) = (𝑟 · 𝐴))
98eqeq1d 2731 . . . . . . . 8 (𝑜 = 𝑟 → ((𝑜 · 𝐴) = (𝑝 · 𝐴) ↔ (𝑟 · 𝐴) = (𝑝 · 𝐴)))
107, 9anbi12d 632 . . . . . . 7 (𝑜 = 𝑟 → ((𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)) ↔ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴))))
1110rexbidv 3153 . . . . . 6 (𝑜 = 𝑟 → (∃𝑝 ∈ ℕ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)) ↔ ∃𝑝 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴))))
1211cbvrexvw 3208 . . . . 5 (∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)) ↔ ∃𝑟 ∈ ℕ ∃𝑝 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑟 · 𝐴) = (𝑝 · 𝐴)))
13 breq1 5095 . . . . . . . 8 (𝑜 = 𝑝 → (𝑜 < 𝑟𝑝 < 𝑟))
14 oveq1 7356 . . . . . . . . 9 (𝑜 = 𝑝 → (𝑜 · 𝐴) = (𝑝 · 𝐴))
1514eqeq1d 2731 . . . . . . . 8 (𝑜 = 𝑝 → ((𝑜 · 𝐴) = (𝑟 · 𝐴) ↔ (𝑝 · 𝐴) = (𝑟 · 𝐴)))
1613, 15anbi12d 632 . . . . . . 7 (𝑜 = 𝑝 → ((𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)) ↔ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴))))
1716rexbidv 3153 . . . . . 6 (𝑜 = 𝑝 → (∃𝑟 ∈ ℕ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)) ↔ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴))))
1817cbvrexvw 3208 . . . . 5 (∃𝑜 ∈ ℕ ∃𝑟 ∈ ℕ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)) ↔ ∃𝑝 ∈ ℕ ∃𝑟 ∈ ℕ (𝑝 < 𝑟 ∧ (𝑝 · 𝐴) = (𝑟 · 𝐴)))
196, 12, 183imtr4i 292 . . . 4 (∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)) → ∃𝑜 ∈ ℕ ∃𝑟 ∈ ℕ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)))
20 breq1 5095 . . . . . . 7 (𝑞 = 𝑝 → (𝑞 < 𝑜𝑝 < 𝑜))
21 oveq1 7356 . . . . . . . 8 (𝑞 = 𝑝 → (𝑞 · 𝐴) = (𝑝 · 𝐴))
2221eqeq2d 2740 . . . . . . 7 (𝑞 = 𝑝 → ((𝑜 · 𝐴) = (𝑞 · 𝐴) ↔ (𝑜 · 𝐴) = (𝑝 · 𝐴)))
2320, 22anbi12d 632 . . . . . 6 (𝑞 = 𝑝 → ((𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴))))
2423cbvrexvw 3208 . . . . 5 (∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑝 ∈ ℕ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)))
2524rexbii 3076 . . . 4 (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑝 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑝 · 𝐴)))
26 breq2 5096 . . . . . . 7 (𝑞 = 𝑟 → (𝑜 < 𝑞𝑜 < 𝑟))
27 oveq1 7356 . . . . . . . 8 (𝑞 = 𝑟 → (𝑞 · 𝐴) = (𝑟 · 𝐴))
2827eqeq2d 2740 . . . . . . 7 (𝑞 = 𝑟 → ((𝑜 · 𝐴) = (𝑞 · 𝐴) ↔ (𝑜 · 𝐴) = (𝑟 · 𝐴)))
2926, 28anbi12d 632 . . . . . 6 (𝑞 = 𝑟 → ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴))))
3029cbvrexvw 3208 . . . . 5 (∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑟 ∈ ℕ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)))
3130rexbii 3076 . . . 4 (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑜 ∈ ℕ ∃𝑟 ∈ ℕ (𝑜 < 𝑟 ∧ (𝑜 · 𝐴) = (𝑟 · 𝐴)))
3219, 25, 313imtr4i 292 . . 3 (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
3332adantl 481 . 2 ((𝜑 ∧ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
34 fimgmcyclem.s . . 3 (𝜑 → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
35 simpl 482 . . . . . . . . 9 ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → 𝑜 ∈ ℕ)
3635nnred 12143 . . . . . . . 8 ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → 𝑜 ∈ ℝ)
37 simpr 484 . . . . . . . . 9 ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → 𝑞 ∈ ℕ)
3837nnred 12143 . . . . . . . 8 ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → 𝑞 ∈ ℝ)
3936, 38lttri2d 11255 . . . . . . 7 ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → (𝑜𝑞 ↔ (𝑜 < 𝑞𝑞 < 𝑜)))
4039anbi1d 631 . . . . . 6 ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((𝑜𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ((𝑜 < 𝑞𝑞 < 𝑜) ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
41 andir 1010 . . . . . 6 (((𝑜 < 𝑞𝑞 < 𝑜) ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
4240, 41bitrdi 287 . . . . 5 ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((𝑜𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))))
43422rexbiia 3190 . . . 4 (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
44 r19.43 3097 . . . . 5 (∃𝑞 ∈ ℕ ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) ↔ (∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
4544rexbii 3076 . . . 4 (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ ((𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) ↔ ∃𝑜 ∈ ℕ (∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
46 r19.43 3097 . . . 4 (∃𝑜 ∈ ℕ (∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))) ↔ (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
4743, 45, 463bitri 297 . . 3 (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
4834, 47sylib 218 . 2 (𝜑 → (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ∨ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑞 < 𝑜 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
491, 33, 48mpjaodan 960 1 (𝜑 → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5092  (class class class)co 7349   < clt 11149  cn 12128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-i2m1 11077  ax-1ne0 11078  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-ltxr 11154  df-nn 12129
This theorem is referenced by:  fimgmcyc  42507
  Copyright terms: Public domain W3C validator