Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abvexp Structured version   Visualization version   GIF version

Theorem abvexp 42505
Description: Move exponentiation in and out of absolute value. (Contributed by SN, 3-Jul-2025.)
Hypotheses
Ref Expression
abvexp.a 𝐴 = (AbsVal‘𝑅)
abvexp.e = (.g‘(mulGrp‘𝑅))
abvexp.b 𝐵 = (Base‘𝑅)
abvexp.r (𝜑𝑅 ∈ NzRing)
abvexp.f (𝜑𝐹𝐴)
abvexp.x (𝜑𝑋𝐵)
abvexp.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
abvexp (𝜑 → (𝐹‘(𝑁 𝑋)) = ((𝐹𝑋)↑𝑁))

Proof of Theorem abvexp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvexp.n . 2 (𝜑𝑁 ∈ ℕ0)
2 fvoveq1 7376 . . . 4 (𝑥 = 0 → (𝐹‘(𝑥 𝑋)) = (𝐹‘(0 𝑋)))
3 oveq2 7361 . . . 4 (𝑥 = 0 → ((𝐹𝑋)↑𝑥) = ((𝐹𝑋)↑0))
42, 3eqeq12d 2745 . . 3 (𝑥 = 0 → ((𝐹‘(𝑥 𝑋)) = ((𝐹𝑋)↑𝑥) ↔ (𝐹‘(0 𝑋)) = ((𝐹𝑋)↑0)))
5 fvoveq1 7376 . . . 4 (𝑥 = 𝑦 → (𝐹‘(𝑥 𝑋)) = (𝐹‘(𝑦 𝑋)))
6 oveq2 7361 . . . 4 (𝑥 = 𝑦 → ((𝐹𝑋)↑𝑥) = ((𝐹𝑋)↑𝑦))
75, 6eqeq12d 2745 . . 3 (𝑥 = 𝑦 → ((𝐹‘(𝑥 𝑋)) = ((𝐹𝑋)↑𝑥) ↔ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)))
8 fvoveq1 7376 . . . 4 (𝑥 = (𝑦 + 1) → (𝐹‘(𝑥 𝑋)) = (𝐹‘((𝑦 + 1) 𝑋)))
9 oveq2 7361 . . . 4 (𝑥 = (𝑦 + 1) → ((𝐹𝑋)↑𝑥) = ((𝐹𝑋)↑(𝑦 + 1)))
108, 9eqeq12d 2745 . . 3 (𝑥 = (𝑦 + 1) → ((𝐹‘(𝑥 𝑋)) = ((𝐹𝑋)↑𝑥) ↔ (𝐹‘((𝑦 + 1) 𝑋)) = ((𝐹𝑋)↑(𝑦 + 1))))
11 fvoveq1 7376 . . . 4 (𝑥 = 𝑁 → (𝐹‘(𝑥 𝑋)) = (𝐹‘(𝑁 𝑋)))
12 oveq2 7361 . . . 4 (𝑥 = 𝑁 → ((𝐹𝑋)↑𝑥) = ((𝐹𝑋)↑𝑁))
1311, 12eqeq12d 2745 . . 3 (𝑥 = 𝑁 → ((𝐹‘(𝑥 𝑋)) = ((𝐹𝑋)↑𝑥) ↔ (𝐹‘(𝑁 𝑋)) = ((𝐹𝑋)↑𝑁)))
14 abvexp.f . . . . 5 (𝜑𝐹𝐴)
15 abvexp.r . . . . . 6 (𝜑𝑅 ∈ NzRing)
16 eqid 2729 . . . . . . 7 (1r𝑅) = (1r𝑅)
17 eqid 2729 . . . . . . 7 (0g𝑅) = (0g𝑅)
1816, 17nzrnz 20418 . . . . . 6 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
1915, 18syl 17 . . . . 5 (𝜑 → (1r𝑅) ≠ (0g𝑅))
20 abvexp.a . . . . . 6 𝐴 = (AbsVal‘𝑅)
2120, 16, 17abv1z 20727 . . . . 5 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → (𝐹‘(1r𝑅)) = 1)
2214, 19, 21syl2anc 584 . . . 4 (𝜑 → (𝐹‘(1r𝑅)) = 1)
23 abvexp.x . . . . . 6 (𝜑𝑋𝐵)
24 eqid 2729 . . . . . . . 8 (mulGrp‘𝑅) = (mulGrp‘𝑅)
25 abvexp.b . . . . . . . 8 𝐵 = (Base‘𝑅)
2624, 25mgpbas 20048 . . . . . . 7 𝐵 = (Base‘(mulGrp‘𝑅))
2724, 16ringidval 20086 . . . . . . 7 (1r𝑅) = (0g‘(mulGrp‘𝑅))
28 abvexp.e . . . . . . 7 = (.g‘(mulGrp‘𝑅))
2926, 27, 28mulg0 18971 . . . . . 6 (𝑋𝐵 → (0 𝑋) = (1r𝑅))
3023, 29syl 17 . . . . 5 (𝜑 → (0 𝑋) = (1r𝑅))
3130fveq2d 6830 . . . 4 (𝜑 → (𝐹‘(0 𝑋)) = (𝐹‘(1r𝑅)))
3220, 25abvcl 20719 . . . . . . 7 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℝ)
3314, 23, 32syl2anc 584 . . . . . 6 (𝜑 → (𝐹𝑋) ∈ ℝ)
3433recnd 11162 . . . . 5 (𝜑 → (𝐹𝑋) ∈ ℂ)
3534exp0d 14065 . . . 4 (𝜑 → ((𝐹𝑋)↑0) = 1)
3622, 31, 353eqtr4d 2774 . . 3 (𝜑 → (𝐹‘(0 𝑋)) = ((𝐹𝑋)↑0))
3714ad2antrr 726 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → 𝐹𝐴)
38 nzrring 20419 . . . . . . . . 9 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
3924ringmgp 20142 . . . . . . . . 9 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
4015, 38, 393syl 18 . . . . . . . 8 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
4140ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → (mulGrp‘𝑅) ∈ Mnd)
42 simplr 768 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → 𝑦 ∈ ℕ0)
4323ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → 𝑋𝐵)
4426, 28, 41, 42, 43mulgnn0cld 18992 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → (𝑦 𝑋) ∈ 𝐵)
45 eqid 2729 . . . . . . 7 (.r𝑅) = (.r𝑅)
4620, 25, 45abvmul 20724 . . . . . 6 ((𝐹𝐴 ∧ (𝑦 𝑋) ∈ 𝐵𝑋𝐵) → (𝐹‘((𝑦 𝑋)(.r𝑅)𝑋)) = ((𝐹‘(𝑦 𝑋)) · (𝐹𝑋)))
4737, 44, 43, 46syl3anc 1373 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → (𝐹‘((𝑦 𝑋)(.r𝑅)𝑋)) = ((𝐹‘(𝑦 𝑋)) · (𝐹𝑋)))
48 simpr 484 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦))
4948oveq1d 7368 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → ((𝐹‘(𝑦 𝑋)) · (𝐹𝑋)) = (((𝐹𝑋)↑𝑦) · (𝐹𝑋)))
5047, 49eqtrd 2764 . . . 4 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → (𝐹‘((𝑦 𝑋)(.r𝑅)𝑋)) = (((𝐹𝑋)↑𝑦) · (𝐹𝑋)))
5124, 45mgpplusg 20047 . . . . . . 7 (.r𝑅) = (+g‘(mulGrp‘𝑅))
5226, 28, 51mulgnn0p1 18982 . . . . . 6 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) 𝑋) = ((𝑦 𝑋)(.r𝑅)𝑋))
5341, 42, 43, 52syl3anc 1373 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → ((𝑦 + 1) 𝑋) = ((𝑦 𝑋)(.r𝑅)𝑋))
5453fveq2d 6830 . . . 4 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → (𝐹‘((𝑦 + 1) 𝑋)) = (𝐹‘((𝑦 𝑋)(.r𝑅)𝑋)))
5534ad2antrr 726 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → (𝐹𝑋) ∈ ℂ)
5655, 42expp1d 14072 . . . 4 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → ((𝐹𝑋)↑(𝑦 + 1)) = (((𝐹𝑋)↑𝑦) · (𝐹𝑋)))
5750, 54, 563eqtr4d 2774 . . 3 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → (𝐹‘((𝑦 + 1) 𝑋)) = ((𝐹𝑋)↑(𝑦 + 1)))
584, 7, 10, 13, 36, 57nn0indd 12591 . 2 ((𝜑𝑁 ∈ ℕ0) → (𝐹‘(𝑁 𝑋)) = ((𝐹𝑋)↑𝑁))
591, 58mpdan 687 1 (𝜑 → (𝐹‘(𝑁 𝑋)) = ((𝐹𝑋)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  0cn0 12402  cexp 13986  Basecbs 17138  .rcmulr 17180  0gc0g 17361  Mndcmnd 18626  .gcmg 18964  mulGrpcmgp 20043  1rcur 20084  Ringcrg 20136  NzRingcnzr 20415  AbsValcabv 20711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-ico 13272  df-fz 13429  df-seq 13927  df-exp 13987  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mulg 18965  df-mgp 20044  df-ur 20085  df-ring 20138  df-nzr 20416  df-abv 20712
This theorem is referenced by:  fiabv  42509
  Copyright terms: Public domain W3C validator