| Step | Hyp | Ref
| Expression |
| 1 | | abvexp.n |
. 2
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 2 | | fvoveq1 7433 |
. . . 4
⊢ (𝑥 = 0 → (𝐹‘(𝑥 ↑ 𝑋)) = (𝐹‘(0 ↑ 𝑋))) |
| 3 | | oveq2 7418 |
. . . 4
⊢ (𝑥 = 0 → ((𝐹‘𝑋)↑𝑥) = ((𝐹‘𝑋)↑0)) |
| 4 | 2, 3 | eqeq12d 2752 |
. . 3
⊢ (𝑥 = 0 → ((𝐹‘(𝑥 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑥) ↔ (𝐹‘(0 ↑ 𝑋)) = ((𝐹‘𝑋)↑0))) |
| 5 | | fvoveq1 7433 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝐹‘(𝑥 ↑ 𝑋)) = (𝐹‘(𝑦 ↑ 𝑋))) |
| 6 | | oveq2 7418 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑋)↑𝑥) = ((𝐹‘𝑋)↑𝑦)) |
| 7 | 5, 6 | eqeq12d 2752 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝐹‘(𝑥 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑥) ↔ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦))) |
| 8 | | fvoveq1 7433 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (𝐹‘(𝑥 ↑ 𝑋)) = (𝐹‘((𝑦 + 1) ↑ 𝑋))) |
| 9 | | oveq2 7418 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → ((𝐹‘𝑋)↑𝑥) = ((𝐹‘𝑋)↑(𝑦 + 1))) |
| 10 | 8, 9 | eqeq12d 2752 |
. . 3
⊢ (𝑥 = (𝑦 + 1) → ((𝐹‘(𝑥 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑥) ↔ (𝐹‘((𝑦 + 1) ↑ 𝑋)) = ((𝐹‘𝑋)↑(𝑦 + 1)))) |
| 11 | | fvoveq1 7433 |
. . . 4
⊢ (𝑥 = 𝑁 → (𝐹‘(𝑥 ↑ 𝑋)) = (𝐹‘(𝑁 ↑ 𝑋))) |
| 12 | | oveq2 7418 |
. . . 4
⊢ (𝑥 = 𝑁 → ((𝐹‘𝑋)↑𝑥) = ((𝐹‘𝑋)↑𝑁)) |
| 13 | 11, 12 | eqeq12d 2752 |
. . 3
⊢ (𝑥 = 𝑁 → ((𝐹‘(𝑥 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑥) ↔ (𝐹‘(𝑁 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑁))) |
| 14 | | abvexp.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ 𝐴) |
| 15 | | abvexp.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ NzRing) |
| 16 | | eqid 2736 |
. . . . . . 7
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 17 | | eqid 2736 |
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 18 | 16, 17 | nzrnz 20480 |
. . . . . 6
⊢ (𝑅 ∈ NzRing →
(1r‘𝑅)
≠ (0g‘𝑅)) |
| 19 | 15, 18 | syl 17 |
. . . . 5
⊢ (𝜑 → (1r‘𝑅) ≠
(0g‘𝑅)) |
| 20 | | abvexp.a |
. . . . . 6
⊢ 𝐴 = (AbsVal‘𝑅) |
| 21 | 20, 16, 17 | abv1z 20789 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ (1r‘𝑅) ≠
(0g‘𝑅))
→ (𝐹‘(1r‘𝑅)) = 1) |
| 22 | 14, 19, 21 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝐹‘(1r‘𝑅)) = 1) |
| 23 | | abvexp.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 24 | | eqid 2736 |
. . . . . . . 8
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
| 25 | | abvexp.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) |
| 26 | 24, 25 | mgpbas 20110 |
. . . . . . 7
⊢ 𝐵 =
(Base‘(mulGrp‘𝑅)) |
| 27 | 24, 16 | ringidval 20148 |
. . . . . . 7
⊢
(1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
| 28 | | abvexp.e |
. . . . . . 7
⊢ ↑ =
(.g‘(mulGrp‘𝑅)) |
| 29 | 26, 27, 28 | mulg0 19062 |
. . . . . 6
⊢ (𝑋 ∈ 𝐵 → (0 ↑ 𝑋) = (1r‘𝑅)) |
| 30 | 23, 29 | syl 17 |
. . . . 5
⊢ (𝜑 → (0 ↑ 𝑋) = (1r‘𝑅)) |
| 31 | 30 | fveq2d 6885 |
. . . 4
⊢ (𝜑 → (𝐹‘(0 ↑ 𝑋)) = (𝐹‘(1r‘𝑅))) |
| 32 | 20, 25 | abvcl 20781 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ ℝ) |
| 33 | 14, 23, 32 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝑋) ∈ ℝ) |
| 34 | 33 | recnd 11268 |
. . . . 5
⊢ (𝜑 → (𝐹‘𝑋) ∈ ℂ) |
| 35 | 34 | exp0d 14163 |
. . . 4
⊢ (𝜑 → ((𝐹‘𝑋)↑0) = 1) |
| 36 | 22, 31, 35 | 3eqtr4d 2781 |
. . 3
⊢ (𝜑 → (𝐹‘(0 ↑ 𝑋)) = ((𝐹‘𝑋)↑0)) |
| 37 | 14 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → 𝐹 ∈ 𝐴) |
| 38 | | nzrring 20481 |
. . . . . . . . 9
⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
| 39 | 24 | ringmgp 20204 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(mulGrp‘𝑅) ∈
Mnd) |
| 40 | 15, 38, 39 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
| 41 | 40 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → (mulGrp‘𝑅) ∈ Mnd) |
| 42 | | simplr 768 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → 𝑦 ∈ ℕ0) |
| 43 | 23 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → 𝑋 ∈ 𝐵) |
| 44 | 26, 28, 41, 42, 43 | mulgnn0cld 19083 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → (𝑦 ↑ 𝑋) ∈ 𝐵) |
| 45 | | eqid 2736 |
. . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 46 | 20, 25, 45 | abvmul 20786 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑦 ↑ 𝑋) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝐹‘((𝑦 ↑ 𝑋)(.r‘𝑅)𝑋)) = ((𝐹‘(𝑦 ↑ 𝑋)) · (𝐹‘𝑋))) |
| 47 | 37, 44, 43, 46 | syl3anc 1373 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → (𝐹‘((𝑦 ↑ 𝑋)(.r‘𝑅)𝑋)) = ((𝐹‘(𝑦 ↑ 𝑋)) · (𝐹‘𝑋))) |
| 48 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) |
| 49 | 48 | oveq1d 7425 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → ((𝐹‘(𝑦 ↑ 𝑋)) · (𝐹‘𝑋)) = (((𝐹‘𝑋)↑𝑦) · (𝐹‘𝑋))) |
| 50 | 47, 49 | eqtrd 2771 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → (𝐹‘((𝑦 ↑ 𝑋)(.r‘𝑅)𝑋)) = (((𝐹‘𝑋)↑𝑦) · (𝐹‘𝑋))) |
| 51 | 24, 45 | mgpplusg 20109 |
. . . . . . 7
⊢
(.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
| 52 | 26, 28, 51 | mulgnn0p1 19073 |
. . . . . 6
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ 𝑦 ∈
ℕ0 ∧ 𝑋
∈ 𝐵) → ((𝑦 + 1) ↑ 𝑋) = ((𝑦 ↑ 𝑋)(.r‘𝑅)𝑋)) |
| 53 | 41, 42, 43, 52 | syl3anc 1373 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → ((𝑦 + 1) ↑ 𝑋) = ((𝑦 ↑ 𝑋)(.r‘𝑅)𝑋)) |
| 54 | 53 | fveq2d 6885 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → (𝐹‘((𝑦 + 1) ↑ 𝑋)) = (𝐹‘((𝑦 ↑ 𝑋)(.r‘𝑅)𝑋))) |
| 55 | 34 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → (𝐹‘𝑋) ∈ ℂ) |
| 56 | 55, 42 | expp1d 14170 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → ((𝐹‘𝑋)↑(𝑦 + 1)) = (((𝐹‘𝑋)↑𝑦) · (𝐹‘𝑋))) |
| 57 | 50, 54, 56 | 3eqtr4d 2781 |
. . 3
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → (𝐹‘((𝑦 + 1) ↑ 𝑋)) = ((𝐹‘𝑋)↑(𝑦 + 1))) |
| 58 | 4, 7, 10, 13, 36, 57 | nn0indd 12695 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑁 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑁)) |
| 59 | 1, 58 | mpdan 687 |
1
⊢ (𝜑 → (𝐹‘(𝑁 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑁)) |