Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abvexp Structured version   Visualization version   GIF version

Theorem abvexp 42522
Description: Move exponentiation in and out of absolute value. (Contributed by SN, 3-Jul-2025.)
Hypotheses
Ref Expression
abvexp.a 𝐴 = (AbsVal‘𝑅)
abvexp.e = (.g‘(mulGrp‘𝑅))
abvexp.b 𝐵 = (Base‘𝑅)
abvexp.r (𝜑𝑅 ∈ NzRing)
abvexp.f (𝜑𝐹𝐴)
abvexp.x (𝜑𝑋𝐵)
abvexp.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
abvexp (𝜑 → (𝐹‘(𝑁 𝑋)) = ((𝐹𝑋)↑𝑁))

Proof of Theorem abvexp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvexp.n . 2 (𝜑𝑁 ∈ ℕ0)
2 fvoveq1 7433 . . . 4 (𝑥 = 0 → (𝐹‘(𝑥 𝑋)) = (𝐹‘(0 𝑋)))
3 oveq2 7418 . . . 4 (𝑥 = 0 → ((𝐹𝑋)↑𝑥) = ((𝐹𝑋)↑0))
42, 3eqeq12d 2752 . . 3 (𝑥 = 0 → ((𝐹‘(𝑥 𝑋)) = ((𝐹𝑋)↑𝑥) ↔ (𝐹‘(0 𝑋)) = ((𝐹𝑋)↑0)))
5 fvoveq1 7433 . . . 4 (𝑥 = 𝑦 → (𝐹‘(𝑥 𝑋)) = (𝐹‘(𝑦 𝑋)))
6 oveq2 7418 . . . 4 (𝑥 = 𝑦 → ((𝐹𝑋)↑𝑥) = ((𝐹𝑋)↑𝑦))
75, 6eqeq12d 2752 . . 3 (𝑥 = 𝑦 → ((𝐹‘(𝑥 𝑋)) = ((𝐹𝑋)↑𝑥) ↔ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)))
8 fvoveq1 7433 . . . 4 (𝑥 = (𝑦 + 1) → (𝐹‘(𝑥 𝑋)) = (𝐹‘((𝑦 + 1) 𝑋)))
9 oveq2 7418 . . . 4 (𝑥 = (𝑦 + 1) → ((𝐹𝑋)↑𝑥) = ((𝐹𝑋)↑(𝑦 + 1)))
108, 9eqeq12d 2752 . . 3 (𝑥 = (𝑦 + 1) → ((𝐹‘(𝑥 𝑋)) = ((𝐹𝑋)↑𝑥) ↔ (𝐹‘((𝑦 + 1) 𝑋)) = ((𝐹𝑋)↑(𝑦 + 1))))
11 fvoveq1 7433 . . . 4 (𝑥 = 𝑁 → (𝐹‘(𝑥 𝑋)) = (𝐹‘(𝑁 𝑋)))
12 oveq2 7418 . . . 4 (𝑥 = 𝑁 → ((𝐹𝑋)↑𝑥) = ((𝐹𝑋)↑𝑁))
1311, 12eqeq12d 2752 . . 3 (𝑥 = 𝑁 → ((𝐹‘(𝑥 𝑋)) = ((𝐹𝑋)↑𝑥) ↔ (𝐹‘(𝑁 𝑋)) = ((𝐹𝑋)↑𝑁)))
14 abvexp.f . . . . 5 (𝜑𝐹𝐴)
15 abvexp.r . . . . . 6 (𝜑𝑅 ∈ NzRing)
16 eqid 2736 . . . . . . 7 (1r𝑅) = (1r𝑅)
17 eqid 2736 . . . . . . 7 (0g𝑅) = (0g𝑅)
1816, 17nzrnz 20480 . . . . . 6 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
1915, 18syl 17 . . . . 5 (𝜑 → (1r𝑅) ≠ (0g𝑅))
20 abvexp.a . . . . . 6 𝐴 = (AbsVal‘𝑅)
2120, 16, 17abv1z 20789 . . . . 5 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → (𝐹‘(1r𝑅)) = 1)
2214, 19, 21syl2anc 584 . . . 4 (𝜑 → (𝐹‘(1r𝑅)) = 1)
23 abvexp.x . . . . . 6 (𝜑𝑋𝐵)
24 eqid 2736 . . . . . . . 8 (mulGrp‘𝑅) = (mulGrp‘𝑅)
25 abvexp.b . . . . . . . 8 𝐵 = (Base‘𝑅)
2624, 25mgpbas 20110 . . . . . . 7 𝐵 = (Base‘(mulGrp‘𝑅))
2724, 16ringidval 20148 . . . . . . 7 (1r𝑅) = (0g‘(mulGrp‘𝑅))
28 abvexp.e . . . . . . 7 = (.g‘(mulGrp‘𝑅))
2926, 27, 28mulg0 19062 . . . . . 6 (𝑋𝐵 → (0 𝑋) = (1r𝑅))
3023, 29syl 17 . . . . 5 (𝜑 → (0 𝑋) = (1r𝑅))
3130fveq2d 6885 . . . 4 (𝜑 → (𝐹‘(0 𝑋)) = (𝐹‘(1r𝑅)))
3220, 25abvcl 20781 . . . . . . 7 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℝ)
3314, 23, 32syl2anc 584 . . . . . 6 (𝜑 → (𝐹𝑋) ∈ ℝ)
3433recnd 11268 . . . . 5 (𝜑 → (𝐹𝑋) ∈ ℂ)
3534exp0d 14163 . . . 4 (𝜑 → ((𝐹𝑋)↑0) = 1)
3622, 31, 353eqtr4d 2781 . . 3 (𝜑 → (𝐹‘(0 𝑋)) = ((𝐹𝑋)↑0))
3714ad2antrr 726 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → 𝐹𝐴)
38 nzrring 20481 . . . . . . . . 9 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
3924ringmgp 20204 . . . . . . . . 9 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
4015, 38, 393syl 18 . . . . . . . 8 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
4140ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → (mulGrp‘𝑅) ∈ Mnd)
42 simplr 768 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → 𝑦 ∈ ℕ0)
4323ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → 𝑋𝐵)
4426, 28, 41, 42, 43mulgnn0cld 19083 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → (𝑦 𝑋) ∈ 𝐵)
45 eqid 2736 . . . . . . 7 (.r𝑅) = (.r𝑅)
4620, 25, 45abvmul 20786 . . . . . 6 ((𝐹𝐴 ∧ (𝑦 𝑋) ∈ 𝐵𝑋𝐵) → (𝐹‘((𝑦 𝑋)(.r𝑅)𝑋)) = ((𝐹‘(𝑦 𝑋)) · (𝐹𝑋)))
4737, 44, 43, 46syl3anc 1373 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → (𝐹‘((𝑦 𝑋)(.r𝑅)𝑋)) = ((𝐹‘(𝑦 𝑋)) · (𝐹𝑋)))
48 simpr 484 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦))
4948oveq1d 7425 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → ((𝐹‘(𝑦 𝑋)) · (𝐹𝑋)) = (((𝐹𝑋)↑𝑦) · (𝐹𝑋)))
5047, 49eqtrd 2771 . . . 4 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → (𝐹‘((𝑦 𝑋)(.r𝑅)𝑋)) = (((𝐹𝑋)↑𝑦) · (𝐹𝑋)))
5124, 45mgpplusg 20109 . . . . . . 7 (.r𝑅) = (+g‘(mulGrp‘𝑅))
5226, 28, 51mulgnn0p1 19073 . . . . . 6 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) 𝑋) = ((𝑦 𝑋)(.r𝑅)𝑋))
5341, 42, 43, 52syl3anc 1373 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → ((𝑦 + 1) 𝑋) = ((𝑦 𝑋)(.r𝑅)𝑋))
5453fveq2d 6885 . . . 4 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → (𝐹‘((𝑦 + 1) 𝑋)) = (𝐹‘((𝑦 𝑋)(.r𝑅)𝑋)))
5534ad2antrr 726 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → (𝐹𝑋) ∈ ℂ)
5655, 42expp1d 14170 . . . 4 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → ((𝐹𝑋)↑(𝑦 + 1)) = (((𝐹𝑋)↑𝑦) · (𝐹𝑋)))
5750, 54, 563eqtr4d 2781 . . 3 (((𝜑𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 𝑋)) = ((𝐹𝑋)↑𝑦)) → (𝐹‘((𝑦 + 1) 𝑋)) = ((𝐹𝑋)↑(𝑦 + 1)))
584, 7, 10, 13, 36, 57nn0indd 12695 . 2 ((𝜑𝑁 ∈ ℕ0) → (𝐹‘(𝑁 𝑋)) = ((𝐹𝑋)↑𝑁))
591, 58mpdan 687 1 (𝜑 → (𝐹‘(𝑁 𝑋)) = ((𝐹𝑋)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  0cn0 12506  cexp 14084  Basecbs 17233  .rcmulr 17277  0gc0g 17458  Mndcmnd 18717  .gcmg 19055  mulGrpcmgp 20105  1rcur 20146  Ringcrg 20198  NzRingcnzr 20477  AbsValcabv 20773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-ico 13373  df-fz 13530  df-seq 14025  df-exp 14085  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mulg 19056  df-mgp 20106  df-ur 20147  df-ring 20200  df-nzr 20478  df-abv 20774
This theorem is referenced by:  fiabv  42526
  Copyright terms: Public domain W3C validator