| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | abvexp.n | . 2
⊢ (𝜑 → 𝑁 ∈
ℕ0) | 
| 2 |  | fvoveq1 7454 | . . . 4
⊢ (𝑥 = 0 → (𝐹‘(𝑥 ↑ 𝑋)) = (𝐹‘(0 ↑ 𝑋))) | 
| 3 |  | oveq2 7439 | . . . 4
⊢ (𝑥 = 0 → ((𝐹‘𝑋)↑𝑥) = ((𝐹‘𝑋)↑0)) | 
| 4 | 2, 3 | eqeq12d 2753 | . . 3
⊢ (𝑥 = 0 → ((𝐹‘(𝑥 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑥) ↔ (𝐹‘(0 ↑ 𝑋)) = ((𝐹‘𝑋)↑0))) | 
| 5 |  | fvoveq1 7454 | . . . 4
⊢ (𝑥 = 𝑦 → (𝐹‘(𝑥 ↑ 𝑋)) = (𝐹‘(𝑦 ↑ 𝑋))) | 
| 6 |  | oveq2 7439 | . . . 4
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑋)↑𝑥) = ((𝐹‘𝑋)↑𝑦)) | 
| 7 | 5, 6 | eqeq12d 2753 | . . 3
⊢ (𝑥 = 𝑦 → ((𝐹‘(𝑥 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑥) ↔ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦))) | 
| 8 |  | fvoveq1 7454 | . . . 4
⊢ (𝑥 = (𝑦 + 1) → (𝐹‘(𝑥 ↑ 𝑋)) = (𝐹‘((𝑦 + 1) ↑ 𝑋))) | 
| 9 |  | oveq2 7439 | . . . 4
⊢ (𝑥 = (𝑦 + 1) → ((𝐹‘𝑋)↑𝑥) = ((𝐹‘𝑋)↑(𝑦 + 1))) | 
| 10 | 8, 9 | eqeq12d 2753 | . . 3
⊢ (𝑥 = (𝑦 + 1) → ((𝐹‘(𝑥 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑥) ↔ (𝐹‘((𝑦 + 1) ↑ 𝑋)) = ((𝐹‘𝑋)↑(𝑦 + 1)))) | 
| 11 |  | fvoveq1 7454 | . . . 4
⊢ (𝑥 = 𝑁 → (𝐹‘(𝑥 ↑ 𝑋)) = (𝐹‘(𝑁 ↑ 𝑋))) | 
| 12 |  | oveq2 7439 | . . . 4
⊢ (𝑥 = 𝑁 → ((𝐹‘𝑋)↑𝑥) = ((𝐹‘𝑋)↑𝑁)) | 
| 13 | 11, 12 | eqeq12d 2753 | . . 3
⊢ (𝑥 = 𝑁 → ((𝐹‘(𝑥 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑥) ↔ (𝐹‘(𝑁 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑁))) | 
| 14 |  | abvexp.f | . . . . 5
⊢ (𝜑 → 𝐹 ∈ 𝐴) | 
| 15 |  | abvexp.r | . . . . . 6
⊢ (𝜑 → 𝑅 ∈ NzRing) | 
| 16 |  | eqid 2737 | . . . . . . 7
⊢
(1r‘𝑅) = (1r‘𝑅) | 
| 17 |  | eqid 2737 | . . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) | 
| 18 | 16, 17 | nzrnz 20515 | . . . . . 6
⊢ (𝑅 ∈ NzRing →
(1r‘𝑅)
≠ (0g‘𝑅)) | 
| 19 | 15, 18 | syl 17 | . . . . 5
⊢ (𝜑 → (1r‘𝑅) ≠
(0g‘𝑅)) | 
| 20 |  | abvexp.a | . . . . . 6
⊢ 𝐴 = (AbsVal‘𝑅) | 
| 21 | 20, 16, 17 | abv1z 20825 | . . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ (1r‘𝑅) ≠
(0g‘𝑅))
→ (𝐹‘(1r‘𝑅)) = 1) | 
| 22 | 14, 19, 21 | syl2anc 584 | . . . 4
⊢ (𝜑 → (𝐹‘(1r‘𝑅)) = 1) | 
| 23 |  | abvexp.x | . . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| 24 |  | eqid 2737 | . . . . . . . 8
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) | 
| 25 |  | abvexp.b | . . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) | 
| 26 | 24, 25 | mgpbas 20142 | . . . . . . 7
⊢ 𝐵 =
(Base‘(mulGrp‘𝑅)) | 
| 27 | 24, 16 | ringidval 20180 | . . . . . . 7
⊢
(1r‘𝑅) = (0g‘(mulGrp‘𝑅)) | 
| 28 |  | abvexp.e | . . . . . . 7
⊢  ↑ =
(.g‘(mulGrp‘𝑅)) | 
| 29 | 26, 27, 28 | mulg0 19092 | . . . . . 6
⊢ (𝑋 ∈ 𝐵 → (0 ↑ 𝑋) = (1r‘𝑅)) | 
| 30 | 23, 29 | syl 17 | . . . . 5
⊢ (𝜑 → (0 ↑ 𝑋) = (1r‘𝑅)) | 
| 31 | 30 | fveq2d 6910 | . . . 4
⊢ (𝜑 → (𝐹‘(0 ↑ 𝑋)) = (𝐹‘(1r‘𝑅))) | 
| 32 | 20, 25 | abvcl 20817 | . . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ ℝ) | 
| 33 | 14, 23, 32 | syl2anc 584 | . . . . . 6
⊢ (𝜑 → (𝐹‘𝑋) ∈ ℝ) | 
| 34 | 33 | recnd 11289 | . . . . 5
⊢ (𝜑 → (𝐹‘𝑋) ∈ ℂ) | 
| 35 | 34 | exp0d 14180 | . . . 4
⊢ (𝜑 → ((𝐹‘𝑋)↑0) = 1) | 
| 36 | 22, 31, 35 | 3eqtr4d 2787 | . . 3
⊢ (𝜑 → (𝐹‘(0 ↑ 𝑋)) = ((𝐹‘𝑋)↑0)) | 
| 37 | 14 | ad2antrr 726 | . . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → 𝐹 ∈ 𝐴) | 
| 38 |  | nzrring 20516 | . . . . . . . . 9
⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | 
| 39 | 24 | ringmgp 20236 | . . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(mulGrp‘𝑅) ∈
Mnd) | 
| 40 | 15, 38, 39 | 3syl 18 | . . . . . . . 8
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) | 
| 41 | 40 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → (mulGrp‘𝑅) ∈ Mnd) | 
| 42 |  | simplr 769 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → 𝑦 ∈ ℕ0) | 
| 43 | 23 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → 𝑋 ∈ 𝐵) | 
| 44 | 26, 28, 41, 42, 43 | mulgnn0cld 19113 | . . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → (𝑦 ↑ 𝑋) ∈ 𝐵) | 
| 45 |  | eqid 2737 | . . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 46 | 20, 25, 45 | abvmul 20822 | . . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑦 ↑ 𝑋) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝐹‘((𝑦 ↑ 𝑋)(.r‘𝑅)𝑋)) = ((𝐹‘(𝑦 ↑ 𝑋)) · (𝐹‘𝑋))) | 
| 47 | 37, 44, 43, 46 | syl3anc 1373 | . . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → (𝐹‘((𝑦 ↑ 𝑋)(.r‘𝑅)𝑋)) = ((𝐹‘(𝑦 ↑ 𝑋)) · (𝐹‘𝑋))) | 
| 48 |  | simpr 484 | . . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) | 
| 49 | 48 | oveq1d 7446 | . . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → ((𝐹‘(𝑦 ↑ 𝑋)) · (𝐹‘𝑋)) = (((𝐹‘𝑋)↑𝑦) · (𝐹‘𝑋))) | 
| 50 | 47, 49 | eqtrd 2777 | . . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → (𝐹‘((𝑦 ↑ 𝑋)(.r‘𝑅)𝑋)) = (((𝐹‘𝑋)↑𝑦) · (𝐹‘𝑋))) | 
| 51 | 24, 45 | mgpplusg 20141 | . . . . . . 7
⊢
(.r‘𝑅) = (+g‘(mulGrp‘𝑅)) | 
| 52 | 26, 28, 51 | mulgnn0p1 19103 | . . . . . 6
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ 𝑦 ∈
ℕ0 ∧ 𝑋
∈ 𝐵) → ((𝑦 + 1) ↑ 𝑋) = ((𝑦 ↑ 𝑋)(.r‘𝑅)𝑋)) | 
| 53 | 41, 42, 43, 52 | syl3anc 1373 | . . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → ((𝑦 + 1) ↑ 𝑋) = ((𝑦 ↑ 𝑋)(.r‘𝑅)𝑋)) | 
| 54 | 53 | fveq2d 6910 | . . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → (𝐹‘((𝑦 + 1) ↑ 𝑋)) = (𝐹‘((𝑦 ↑ 𝑋)(.r‘𝑅)𝑋))) | 
| 55 | 34 | ad2antrr 726 | . . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → (𝐹‘𝑋) ∈ ℂ) | 
| 56 | 55, 42 | expp1d 14187 | . . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → ((𝐹‘𝑋)↑(𝑦 + 1)) = (((𝐹‘𝑋)↑𝑦) · (𝐹‘𝑋))) | 
| 57 | 50, 54, 56 | 3eqtr4d 2787 | . . 3
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝐹‘(𝑦 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑦)) → (𝐹‘((𝑦 + 1) ↑ 𝑋)) = ((𝐹‘𝑋)↑(𝑦 + 1))) | 
| 58 | 4, 7, 10, 13, 36, 57 | nn0indd 12715 | . 2
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑁 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑁)) | 
| 59 | 1, 58 | mpdan 687 | 1
⊢ (𝜑 → (𝐹‘(𝑁 ↑ 𝑋)) = ((𝐹‘𝑋)↑𝑁)) |