Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fimgmcyc Structured version   Visualization version   GIF version

Theorem fimgmcyc 42511
Description: Version of odcl2 19444 for finite magmas: the multiples of an element 𝐴𝐵 are eventually periodic. (Contributed by SN, 3-Jul-2025.)
Hypotheses
Ref Expression
fimgmcyc.b 𝐵 = (Base‘𝑀)
fimgmcyc.m · = (.g𝑀)
fimgmcyc.s (𝜑𝑀 ∈ Mgm)
fimgmcyc.f (𝜑𝐵 ∈ Fin)
fimgmcyc.a (𝜑𝐴𝐵)
Assertion
Ref Expression
fimgmcyc (𝜑 → ∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑜 · 𝐴) = ((𝑜 + 𝑝) · 𝐴))
Distinct variable groups:   𝐴,𝑜,𝑝   · ,𝑜,𝑝   𝜑,𝑜,𝑝
Allowed substitution hints:   𝐵(𝑜,𝑝)   𝑀(𝑜,𝑝)

Proof of Theorem fimgmcyc
Dummy variables 𝑛 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domnsym 9020 . . . . . . . . 9 (ℕ ≼ 𝐵 → ¬ 𝐵 ≺ ℕ)
2 fimgmcyc.f . . . . . . . . . 10 (𝜑𝐵 ∈ Fin)
3 fisdomnn 42221 . . . . . . . . . 10 (𝐵 ∈ Fin → 𝐵 ≺ ℕ)
42, 3syl 17 . . . . . . . . 9 (𝜑𝐵 ≺ ℕ)
51, 4nsyl3 138 . . . . . . . 8 (𝜑 → ¬ ℕ ≼ 𝐵)
6 fimgmcyc.b . . . . . . . . . 10 𝐵 = (Base‘𝑀)
76fvexi 6836 . . . . . . . . 9 𝐵 ∈ V
87f1dom 8899 . . . . . . . 8 ((𝑛 ∈ ℕ ↦ (𝑛 · 𝐴)):ℕ–1-1𝐵 → ℕ ≼ 𝐵)
95, 8nsyl 140 . . . . . . 7 (𝜑 → ¬ (𝑛 ∈ ℕ ↦ (𝑛 · 𝐴)):ℕ–1-1𝐵)
10 fimgmcyc.s . . . . . . . . . . 11 (𝜑𝑀 ∈ Mgm)
1110adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ Mgm)
12 simpr 484 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
13 fimgmcyc.a . . . . . . . . . . 11 (𝜑𝐴𝐵)
1413adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐴𝐵)
15 fimgmcyc.m . . . . . . . . . . 11 · = (.g𝑀)
166, 15mulgnncl 18968 . . . . . . . . . 10 ((𝑀 ∈ Mgm ∧ 𝑛 ∈ ℕ ∧ 𝐴𝐵) → (𝑛 · 𝐴) ∈ 𝐵)
1711, 12, 14, 16syl3anc 1373 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑛 · 𝐴) ∈ 𝐵)
1817fmpttd 7049 . . . . . . . 8 (𝜑 → (𝑛 ∈ ℕ ↦ (𝑛 · 𝐴)):ℕ⟶𝐵)
19 dff13 7191 . . . . . . . . 9 ((𝑛 ∈ ℕ ↦ (𝑛 · 𝐴)):ℕ–1-1𝐵 ↔ ((𝑛 ∈ ℕ ↦ (𝑛 · 𝐴)):ℕ⟶𝐵 ∧ ∀𝑜 ∈ ℕ ∀𝑞 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑛 · 𝐴))‘𝑜) = ((𝑛 ∈ ℕ ↦ (𝑛 · 𝐴))‘𝑞) → 𝑜 = 𝑞)))
2019baib 535 . . . . . . . 8 ((𝑛 ∈ ℕ ↦ (𝑛 · 𝐴)):ℕ⟶𝐵 → ((𝑛 ∈ ℕ ↦ (𝑛 · 𝐴)):ℕ–1-1𝐵 ↔ ∀𝑜 ∈ ℕ ∀𝑞 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑛 · 𝐴))‘𝑜) = ((𝑛 ∈ ℕ ↦ (𝑛 · 𝐴))‘𝑞) → 𝑜 = 𝑞)))
2118, 20syl 17 . . . . . . 7 (𝜑 → ((𝑛 ∈ ℕ ↦ (𝑛 · 𝐴)):ℕ–1-1𝐵 ↔ ∀𝑜 ∈ ℕ ∀𝑞 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑛 · 𝐴))‘𝑜) = ((𝑛 ∈ ℕ ↦ (𝑛 · 𝐴))‘𝑞) → 𝑜 = 𝑞)))
229, 21mtbid 324 . . . . . 6 (𝜑 → ¬ ∀𝑜 ∈ ℕ ∀𝑞 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑛 · 𝐴))‘𝑜) = ((𝑛 ∈ ℕ ↦ (𝑛 · 𝐴))‘𝑞) → 𝑜 = 𝑞))
23 oveq1 7356 . . . . . . . . . . 11 (𝑛 = 𝑜 → (𝑛 · 𝐴) = (𝑜 · 𝐴))
24 eqid 2729 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ (𝑛 · 𝐴)) = (𝑛 ∈ ℕ ↦ (𝑛 · 𝐴))
25 ovex 7382 . . . . . . . . . . 11 (𝑜 · 𝐴) ∈ V
2623, 24, 25fvmpt 6930 . . . . . . . . . 10 (𝑜 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑛 · 𝐴))‘𝑜) = (𝑜 · 𝐴))
27 oveq1 7356 . . . . . . . . . . 11 (𝑛 = 𝑞 → (𝑛 · 𝐴) = (𝑞 · 𝐴))
28 ovex 7382 . . . . . . . . . . 11 (𝑞 · 𝐴) ∈ V
2927, 24, 28fvmpt 6930 . . . . . . . . . 10 (𝑞 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑛 · 𝐴))‘𝑞) = (𝑞 · 𝐴))
3026, 29eqeqan12d 2743 . . . . . . . . 9 ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ (𝑛 · 𝐴))‘𝑜) = ((𝑛 ∈ ℕ ↦ (𝑛 · 𝐴))‘𝑞) ↔ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
3130imbi1d 341 . . . . . . . 8 ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((((𝑛 ∈ ℕ ↦ (𝑛 · 𝐴))‘𝑜) = ((𝑛 ∈ ℕ ↦ (𝑛 · 𝐴))‘𝑞) → 𝑜 = 𝑞) ↔ ((𝑜 · 𝐴) = (𝑞 · 𝐴) → 𝑜 = 𝑞)))
3231ralbidva 3150 . . . . . . 7 (𝑜 ∈ ℕ → (∀𝑞 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑛 · 𝐴))‘𝑜) = ((𝑛 ∈ ℕ ↦ (𝑛 · 𝐴))‘𝑞) → 𝑜 = 𝑞) ↔ ∀𝑞 ∈ ℕ ((𝑜 · 𝐴) = (𝑞 · 𝐴) → 𝑜 = 𝑞)))
3332ralbiia 3073 . . . . . 6 (∀𝑜 ∈ ℕ ∀𝑞 ∈ ℕ (((𝑛 ∈ ℕ ↦ (𝑛 · 𝐴))‘𝑜) = ((𝑛 ∈ ℕ ↦ (𝑛 · 𝐴))‘𝑞) → 𝑜 = 𝑞) ↔ ∀𝑜 ∈ ℕ ∀𝑞 ∈ ℕ ((𝑜 · 𝐴) = (𝑞 · 𝐴) → 𝑜 = 𝑞))
3422, 33sylnib 328 . . . . 5 (𝜑 → ¬ ∀𝑜 ∈ ℕ ∀𝑞 ∈ ℕ ((𝑜 · 𝐴) = (𝑞 · 𝐴) → 𝑜 = 𝑞))
35 df-ne 2926 . . . . . . . . 9 (𝑜𝑞 ↔ ¬ 𝑜 = 𝑞)
3635anbi1i 624 . . . . . . . 8 ((𝑜𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ (¬ 𝑜 = 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
37 ancom 460 . . . . . . . 8 ((¬ 𝑜 = 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ((𝑜 · 𝐴) = (𝑞 · 𝐴) ∧ ¬ 𝑜 = 𝑞))
38 annim 403 . . . . . . . 8 (((𝑜 · 𝐴) = (𝑞 · 𝐴) ∧ ¬ 𝑜 = 𝑞) ↔ ¬ ((𝑜 · 𝐴) = (𝑞 · 𝐴) → 𝑜 = 𝑞))
3936, 37, 383bitri 297 . . . . . . 7 ((𝑜𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ¬ ((𝑜 · 𝐴) = (𝑞 · 𝐴) → 𝑜 = 𝑞))
40392rexbii 3105 . . . . . 6 (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ ¬ ((𝑜 · 𝐴) = (𝑞 · 𝐴) → 𝑜 = 𝑞))
41 rexnal2 3111 . . . . . 6 (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ ¬ ((𝑜 · 𝐴) = (𝑞 · 𝐴) → 𝑜 = 𝑞) ↔ ¬ ∀𝑜 ∈ ℕ ∀𝑞 ∈ ℕ ((𝑜 · 𝐴) = (𝑞 · 𝐴) → 𝑜 = 𝑞))
4240, 41bitri 275 . . . . 5 (∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ¬ ∀𝑜 ∈ ℕ ∀𝑞 ∈ ℕ ((𝑜 · 𝐴) = (𝑞 · 𝐴) → 𝑜 = 𝑞))
4334, 42sylibr 234 . . . 4 (𝜑 → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
4443fimgmcyclem 42510 . . 3 (𝜑 → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
45 nnz 12492 . . . . . . . . . 10 (𝑜 ∈ ℕ → 𝑜 ∈ ℤ)
46 eluzp1 42284 . . . . . . . . . 10 (𝑜 ∈ ℤ → (𝑞 ∈ (ℤ‘(𝑜 + 1)) ↔ (𝑞 ∈ ℤ ∧ 𝑜 < 𝑞)))
4745, 46syl 17 . . . . . . . . 9 (𝑜 ∈ ℕ → (𝑞 ∈ (ℤ‘(𝑜 + 1)) ↔ (𝑞 ∈ ℤ ∧ 𝑜 < 𝑞)))
48 idd 24 . . . . . . . . . . . 12 ((𝑜 ∈ ℕ ∧ 𝑜 < 𝑞) → (𝑞 ∈ ℤ → 𝑞 ∈ ℤ))
49 nnz 12492 . . . . . . . . . . . . 13 (𝑞 ∈ ℕ → 𝑞 ∈ ℤ)
5049a1i 11 . . . . . . . . . . . 12 ((𝑜 ∈ ℕ ∧ 𝑜 < 𝑞) → (𝑞 ∈ ℕ → 𝑞 ∈ ℤ))
51 0red 11118 . . . . . . . . . . . . . . 15 (((𝑜 ∈ ℕ ∧ 𝑜 < 𝑞) ∧ 𝑞 ∈ ℤ) → 0 ∈ ℝ)
52 nnre 12135 . . . . . . . . . . . . . . . 16 (𝑜 ∈ ℕ → 𝑜 ∈ ℝ)
5352ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝑜 ∈ ℕ ∧ 𝑜 < 𝑞) ∧ 𝑞 ∈ ℤ) → 𝑜 ∈ ℝ)
54 zre 12475 . . . . . . . . . . . . . . . 16 (𝑞 ∈ ℤ → 𝑞 ∈ ℝ)
5554adantl 481 . . . . . . . . . . . . . . 15 (((𝑜 ∈ ℕ ∧ 𝑜 < 𝑞) ∧ 𝑞 ∈ ℤ) → 𝑞 ∈ ℝ)
56 nngt0 12159 . . . . . . . . . . . . . . . 16 (𝑜 ∈ ℕ → 0 < 𝑜)
5756ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝑜 ∈ ℕ ∧ 𝑜 < 𝑞) ∧ 𝑞 ∈ ℤ) → 0 < 𝑜)
58 simplr 768 . . . . . . . . . . . . . . 15 (((𝑜 ∈ ℕ ∧ 𝑜 < 𝑞) ∧ 𝑞 ∈ ℤ) → 𝑜 < 𝑞)
5951, 53, 55, 57, 58lttrd 11277 . . . . . . . . . . . . . 14 (((𝑜 ∈ ℕ ∧ 𝑜 < 𝑞) ∧ 𝑞 ∈ ℤ) → 0 < 𝑞)
60 elnnz 12481 . . . . . . . . . . . . . . 15 (𝑞 ∈ ℕ ↔ (𝑞 ∈ ℤ ∧ 0 < 𝑞))
6160rbaibr 537 . . . . . . . . . . . . . 14 (0 < 𝑞 → (𝑞 ∈ ℤ ↔ 𝑞 ∈ ℕ))
6259, 61syl 17 . . . . . . . . . . . . 13 (((𝑜 ∈ ℕ ∧ 𝑜 < 𝑞) ∧ 𝑞 ∈ ℤ) → (𝑞 ∈ ℤ ↔ 𝑞 ∈ ℕ))
6362ex 412 . . . . . . . . . . . 12 ((𝑜 ∈ ℕ ∧ 𝑜 < 𝑞) → (𝑞 ∈ ℤ → (𝑞 ∈ ℤ ↔ 𝑞 ∈ ℕ)))
6448, 50, 63pm5.21ndd 379 . . . . . . . . . . 11 ((𝑜 ∈ ℕ ∧ 𝑜 < 𝑞) → (𝑞 ∈ ℤ ↔ 𝑞 ∈ ℕ))
6564ex 412 . . . . . . . . . 10 (𝑜 ∈ ℕ → (𝑜 < 𝑞 → (𝑞 ∈ ℤ ↔ 𝑞 ∈ ℕ)))
6665pm5.32rd 578 . . . . . . . . 9 (𝑜 ∈ ℕ → ((𝑞 ∈ ℤ ∧ 𝑜 < 𝑞) ↔ (𝑞 ∈ ℕ ∧ 𝑜 < 𝑞)))
6747, 66bitrd 279 . . . . . . . 8 (𝑜 ∈ ℕ → (𝑞 ∈ (ℤ‘(𝑜 + 1)) ↔ (𝑞 ∈ ℕ ∧ 𝑜 < 𝑞)))
6867anbi1d 631 . . . . . . 7 (𝑜 ∈ ℕ → ((𝑞 ∈ (ℤ‘(𝑜 + 1)) ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ((𝑞 ∈ ℕ ∧ 𝑜 < 𝑞) ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
69 anass 468 . . . . . . 7 (((𝑞 ∈ ℕ ∧ 𝑜 < 𝑞) ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ (𝑞 ∈ ℕ ∧ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
7068, 69bitrdi 287 . . . . . 6 (𝑜 ∈ ℕ → ((𝑞 ∈ (ℤ‘(𝑜 + 1)) ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ (𝑞 ∈ ℕ ∧ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))))
7170exbidv 1921 . . . . 5 (𝑜 ∈ ℕ → (∃𝑞(𝑞 ∈ (ℤ‘(𝑜 + 1)) ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑞(𝑞 ∈ ℕ ∧ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))))
72 df-rex 3054 . . . . 5 (∃𝑞 ∈ (ℤ‘(𝑜 + 1))(𝑜 · 𝐴) = (𝑞 · 𝐴) ↔ ∃𝑞(𝑞 ∈ (ℤ‘(𝑜 + 1)) ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
73 df-rex 3054 . . . . 5 (∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)) ↔ ∃𝑞(𝑞 ∈ ℕ ∧ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
7471, 72, 733bitr4g 314 . . . 4 (𝑜 ∈ ℕ → (∃𝑞 ∈ (ℤ‘(𝑜 + 1))(𝑜 · 𝐴) = (𝑞 · 𝐴) ↔ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴))))
7574rexbiia 3074 . . 3 (∃𝑜 ∈ ℕ ∃𝑞 ∈ (ℤ‘(𝑜 + 1))(𝑜 · 𝐴) = (𝑞 · 𝐴) ↔ ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
7644, 75sylibr 234 . 2 (𝜑 → ∃𝑜 ∈ ℕ ∃𝑞 ∈ (ℤ‘(𝑜 + 1))(𝑜 · 𝐴) = (𝑞 · 𝐴))
77 simplr 768 . . . . . . 7 (((𝜑𝑜 ∈ ℕ) ∧ 𝑝 ∈ ℕ) → 𝑜 ∈ ℕ)
7877peano2nnd 12145 . . . . . 6 (((𝜑𝑜 ∈ ℕ) ∧ 𝑝 ∈ ℕ) → (𝑜 + 1) ∈ ℕ)
7978nnzd 12498 . . . . 5 (((𝜑𝑜 ∈ ℕ) ∧ 𝑝 ∈ ℕ) → (𝑜 + 1) ∈ ℤ)
80 simpr 484 . . . . . . 7 (((𝜑𝑜 ∈ ℕ) ∧ 𝑝 ∈ ℕ) → 𝑝 ∈ ℕ)
8177, 80nnaddcld 12180 . . . . . 6 (((𝜑𝑜 ∈ ℕ) ∧ 𝑝 ∈ ℕ) → (𝑜 + 𝑝) ∈ ℕ)
8281nnzd 12498 . . . . 5 (((𝜑𝑜 ∈ ℕ) ∧ 𝑝 ∈ ℕ) → (𝑜 + 𝑝) ∈ ℤ)
83 1red 11116 . . . . . 6 (((𝜑𝑜 ∈ ℕ) ∧ 𝑝 ∈ ℕ) → 1 ∈ ℝ)
8480nnred 12143 . . . . . 6 (((𝜑𝑜 ∈ ℕ) ∧ 𝑝 ∈ ℕ) → 𝑝 ∈ ℝ)
8577nnred 12143 . . . . . 6 (((𝜑𝑜 ∈ ℕ) ∧ 𝑝 ∈ ℕ) → 𝑜 ∈ ℝ)
8680nnge1d 12176 . . . . . 6 (((𝜑𝑜 ∈ ℕ) ∧ 𝑝 ∈ ℕ) → 1 ≤ 𝑝)
8783, 84, 85, 86leadd2dd 11735 . . . . 5 (((𝜑𝑜 ∈ ℕ) ∧ 𝑝 ∈ ℕ) → (𝑜 + 1) ≤ (𝑜 + 𝑝))
88 eluz2 12741 . . . . 5 ((𝑜 + 𝑝) ∈ (ℤ‘(𝑜 + 1)) ↔ ((𝑜 + 1) ∈ ℤ ∧ (𝑜 + 𝑝) ∈ ℤ ∧ (𝑜 + 1) ≤ (𝑜 + 𝑝)))
8979, 82, 87, 88syl3anbrc 1344 . . . 4 (((𝜑𝑜 ∈ ℕ) ∧ 𝑝 ∈ ℕ) → (𝑜 + 𝑝) ∈ (ℤ‘(𝑜 + 1)))
90 simpr 484 . . . . . . . 8 ((𝜑𝑜 ∈ ℕ) → 𝑜 ∈ ℕ)
9190nnzd 12498 . . . . . . 7 ((𝜑𝑜 ∈ ℕ) → 𝑜 ∈ ℤ)
92 eluzp1l 12762 . . . . . . 7 ((𝑜 ∈ ℤ ∧ 𝑞 ∈ (ℤ‘(𝑜 + 1))) → 𝑜 < 𝑞)
9391, 92sylan 580 . . . . . 6 (((𝜑𝑜 ∈ ℕ) ∧ 𝑞 ∈ (ℤ‘(𝑜 + 1))) → 𝑜 < 𝑞)
94 simplr 768 . . . . . . 7 (((𝜑𝑜 ∈ ℕ) ∧ 𝑞 ∈ (ℤ‘(𝑜 + 1))) → 𝑜 ∈ ℕ)
95 peano2nn 12140 . . . . . . . . 9 (𝑜 ∈ ℕ → (𝑜 + 1) ∈ ℕ)
9695adantl 481 . . . . . . . 8 ((𝜑𝑜 ∈ ℕ) → (𝑜 + 1) ∈ ℕ)
97 eluznn 12819 . . . . . . . 8 (((𝑜 + 1) ∈ ℕ ∧ 𝑞 ∈ (ℤ‘(𝑜 + 1))) → 𝑞 ∈ ℕ)
9896, 97sylan 580 . . . . . . 7 (((𝜑𝑜 ∈ ℕ) ∧ 𝑞 ∈ (ℤ‘(𝑜 + 1))) → 𝑞 ∈ ℕ)
99 nnsub 12172 . . . . . . 7 ((𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ) → (𝑜 < 𝑞 ↔ (𝑞𝑜) ∈ ℕ))
10094, 98, 99syl2anc 584 . . . . . 6 (((𝜑𝑜 ∈ ℕ) ∧ 𝑞 ∈ (ℤ‘(𝑜 + 1))) → (𝑜 < 𝑞 ↔ (𝑞𝑜) ∈ ℕ))
10193, 100mpbid 232 . . . . 5 (((𝜑𝑜 ∈ ℕ) ∧ 𝑞 ∈ (ℤ‘(𝑜 + 1))) → (𝑞𝑜) ∈ ℕ)
102 eluzelcn 12747 . . . . . . 7 (𝑞 ∈ (ℤ‘(𝑜 + 1)) → 𝑞 ∈ ℂ)
103102ad2antlr 727 . . . . . 6 ((((𝜑𝑜 ∈ ℕ) ∧ 𝑞 ∈ (ℤ‘(𝑜 + 1))) ∧ 𝑝 = (𝑞𝑜)) → 𝑞 ∈ ℂ)
104 nncn 12136 . . . . . . . 8 (𝑜 ∈ ℕ → 𝑜 ∈ ℂ)
105104adantl 481 . . . . . . 7 ((𝜑𝑜 ∈ ℕ) → 𝑜 ∈ ℂ)
106105ad2antrr 726 . . . . . 6 ((((𝜑𝑜 ∈ ℕ) ∧ 𝑞 ∈ (ℤ‘(𝑜 + 1))) ∧ 𝑝 = (𝑞𝑜)) → 𝑜 ∈ ℂ)
107 simpr 484 . . . . . 6 ((((𝜑𝑜 ∈ ℕ) ∧ 𝑞 ∈ (ℤ‘(𝑜 + 1))) ∧ 𝑝 = (𝑞𝑜)) → 𝑝 = (𝑞𝑜))
108103, 106, 107rsubrotld 42255 . . . . 5 ((((𝜑𝑜 ∈ ℕ) ∧ 𝑞 ∈ (ℤ‘(𝑜 + 1))) ∧ 𝑝 = (𝑞𝑜)) → 𝑞 = (𝑜 + 𝑝))
109101, 108rspcedeq2vd 3585 . . . 4 (((𝜑𝑜 ∈ ℕ) ∧ 𝑞 ∈ (ℤ‘(𝑜 + 1))) → ∃𝑝 ∈ ℕ 𝑞 = (𝑜 + 𝑝))
110 oveq1 7356 . . . . . 6 (𝑞 = (𝑜 + 𝑝) → (𝑞 · 𝐴) = ((𝑜 + 𝑝) · 𝐴))
111110eqeq2d 2740 . . . . 5 (𝑞 = (𝑜 + 𝑝) → ((𝑜 · 𝐴) = (𝑞 · 𝐴) ↔ (𝑜 · 𝐴) = ((𝑜 + 𝑝) · 𝐴)))
112111adantl 481 . . . 4 (((𝜑𝑜 ∈ ℕ) ∧ 𝑞 = (𝑜 + 𝑝)) → ((𝑜 · 𝐴) = (𝑞 · 𝐴) ↔ (𝑜 · 𝐴) = ((𝑜 + 𝑝) · 𝐴)))
11389, 109, 112rexxfrd 5348 . . 3 ((𝜑𝑜 ∈ ℕ) → (∃𝑞 ∈ (ℤ‘(𝑜 + 1))(𝑜 · 𝐴) = (𝑞 · 𝐴) ↔ ∃𝑝 ∈ ℕ (𝑜 · 𝐴) = ((𝑜 + 𝑝) · 𝐴)))
114113rexbidva 3151 . 2 (𝜑 → (∃𝑜 ∈ ℕ ∃𝑞 ∈ (ℤ‘(𝑜 + 1))(𝑜 · 𝐴) = (𝑞 · 𝐴) ↔ ∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑜 · 𝐴) = ((𝑜 + 𝑝) · 𝐴)))
11576, 114mpbid 232 1 (𝜑 → ∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑜 · 𝐴) = ((𝑜 + 𝑝) · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053   class class class wbr 5092  cmpt 5173  wf 6478  1-1wf1 6479  cfv 6482  (class class class)co 7349  cdom 8870  csdm 8871  Fincfn 8872  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   < clt 11149  cle 11150  cmin 11347  cn 12128  cz 12471  cuz 12735  Basecbs 17120  Mgmcmgm 18512  .gcmg 18946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-seq 13909  df-hash 14238  df-mgm 18514  df-mulg 18947
This theorem is referenced by:  fidomncyc  42512
  Copyright terms: Public domain W3C validator