![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prdsmulrval | Structured version Visualization version GIF version |
Description: Value of a componentwise ring product in a structure product. (Contributed by Mario Carneiro, 11-Jan-2015.) |
Ref | Expression |
---|---|
prdsbasmpt.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prdsbasmpt.b | ⊢ 𝐵 = (Base‘𝑌) |
prdsbasmpt.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prdsbasmpt.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdsbasmpt.r | ⊢ (𝜑 → 𝑅 Fn 𝐼) |
prdsplusgval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
prdsplusgval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
prdsmulrval.t | ⊢ · = (.r‘𝑌) |
Ref | Expression |
---|---|
prdsmulrval | ⊢ (𝜑 → (𝐹 · 𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(.r‘(𝑅‘𝑥))(𝐺‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsbasmpt.y | . . 3 ⊢ 𝑌 = (𝑆Xs𝑅) | |
2 | prdsbasmpt.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
3 | prdsbasmpt.r | . . . 4 ⊢ (𝜑 → 𝑅 Fn 𝐼) | |
4 | prdsbasmpt.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | fnex 6804 | . . . 4 ⊢ ((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑊) → 𝑅 ∈ V) | |
6 | 3, 4, 5 | syl2anc 576 | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) |
7 | prdsbasmpt.b | . . 3 ⊢ 𝐵 = (Base‘𝑌) | |
8 | fndm 6285 | . . . 4 ⊢ (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼) | |
9 | 3, 8 | syl 17 | . . 3 ⊢ (𝜑 → dom 𝑅 = 𝐼) |
10 | prdsmulrval.t | . . 3 ⊢ · = (.r‘𝑌) | |
11 | 1, 2, 6, 7, 9, 10 | prdsmulr 16586 | . 2 ⊢ (𝜑 → · = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑦‘𝑥)(.r‘(𝑅‘𝑥))(𝑧‘𝑥))))) |
12 | fveq1 6495 | . . . . 5 ⊢ (𝑦 = 𝐹 → (𝑦‘𝑥) = (𝐹‘𝑥)) | |
13 | fveq1 6495 | . . . . 5 ⊢ (𝑧 = 𝐺 → (𝑧‘𝑥) = (𝐺‘𝑥)) | |
14 | 12, 13 | oveqan12d 6993 | . . . 4 ⊢ ((𝑦 = 𝐹 ∧ 𝑧 = 𝐺) → ((𝑦‘𝑥)(.r‘(𝑅‘𝑥))(𝑧‘𝑥)) = ((𝐹‘𝑥)(.r‘(𝑅‘𝑥))(𝐺‘𝑥))) |
15 | 14 | adantl 474 | . . 3 ⊢ ((𝜑 ∧ (𝑦 = 𝐹 ∧ 𝑧 = 𝐺)) → ((𝑦‘𝑥)(.r‘(𝑅‘𝑥))(𝑧‘𝑥)) = ((𝐹‘𝑥)(.r‘(𝑅‘𝑥))(𝐺‘𝑥))) |
16 | 15 | mpteq2dv 5019 | . 2 ⊢ ((𝜑 ∧ (𝑦 = 𝐹 ∧ 𝑧 = 𝐺)) → (𝑥 ∈ 𝐼 ↦ ((𝑦‘𝑥)(.r‘(𝑅‘𝑥))(𝑧‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(.r‘(𝑅‘𝑥))(𝐺‘𝑥)))) |
17 | prdsplusgval.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
18 | prdsplusgval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
19 | 4 | mptexd 6811 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(.r‘(𝑅‘𝑥))(𝐺‘𝑥))) ∈ V) |
20 | 11, 16, 17, 18, 19 | ovmpod 7116 | 1 ⊢ (𝜑 → (𝐹 · 𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(.r‘(𝑅‘𝑥))(𝐺‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 Vcvv 3408 ↦ cmpt 5004 dom cdm 5403 Fn wfn 6180 ‘cfv 6185 (class class class)co 6974 Basecbs 16337 .rcmulr 16420 Xscprds 16573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7499 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-oadd 7907 df-er 8087 df-map 8206 df-ixp 8258 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-sup 8699 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-nn 11438 df-2 11501 df-3 11502 df-4 11503 df-5 11504 df-6 11505 df-7 11506 df-8 11507 df-9 11508 df-n0 11706 df-z 11792 df-dec 11910 df-uz 12057 df-fz 12707 df-struct 16339 df-ndx 16340 df-slot 16341 df-base 16343 df-plusg 16432 df-mulr 16433 df-sca 16435 df-vsca 16436 df-ip 16437 df-tset 16438 df-ple 16439 df-ds 16441 df-hom 16443 df-cco 16444 df-prds 16575 |
This theorem is referenced by: prdsmulrfval 16603 pwsmulrval 16618 xpsmul 16718 prdsmulrcl 19096 prdsringd 19097 |
Copyright terms: Public domain | W3C validator |