MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsmulrval Structured version   Visualization version   GIF version

Theorem prdsmulrval 17403
Description: Value of a componentwise ring product in a structure product. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
prdsbasmpt.y 𝑌 = (𝑆Xs𝑅)
prdsbasmpt.b 𝐵 = (Base‘𝑌)
prdsbasmpt.s (𝜑𝑆𝑉)
prdsbasmpt.i (𝜑𝐼𝑊)
prdsbasmpt.r (𝜑𝑅 Fn 𝐼)
prdsplusgval.f (𝜑𝐹𝐵)
prdsplusgval.g (𝜑𝐺𝐵)
prdsmulrval.t · = (.r𝑌)
Assertion
Ref Expression
prdsmulrval (𝜑 → (𝐹 · 𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥)(.r‘(𝑅𝑥))(𝐺𝑥))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝐼   𝑥,𝑉   𝑥,𝑅   𝑥,𝑆   𝑥,𝑊   𝑥,𝑌
Allowed substitution hint:   · (𝑥)

Proof of Theorem prdsmulrval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbasmpt.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdsbasmpt.s . . 3 (𝜑𝑆𝑉)
3 prdsbasmpt.r . . . 4 (𝜑𝑅 Fn 𝐼)
4 prdsbasmpt.i . . . 4 (𝜑𝐼𝑊)
5 fnex 7203 . . . 4 ((𝑅 Fn 𝐼𝐼𝑊) → 𝑅 ∈ V)
63, 4, 5syl2anc 584 . . 3 (𝜑𝑅 ∈ V)
7 prdsbasmpt.b . . 3 𝐵 = (Base‘𝑌)
83fndmd 6643 . . 3 (𝜑 → dom 𝑅 = 𝐼)
9 prdsmulrval.t . . 3 · = (.r𝑌)
101, 2, 6, 7, 8, 9prdsmulr 17387 . 2 (𝜑· = (𝑦𝐵, 𝑧𝐵 ↦ (𝑥𝐼 ↦ ((𝑦𝑥)(.r‘(𝑅𝑥))(𝑧𝑥)))))
11 fveq1 6877 . . . . 5 (𝑦 = 𝐹 → (𝑦𝑥) = (𝐹𝑥))
12 fveq1 6877 . . . . 5 (𝑧 = 𝐺 → (𝑧𝑥) = (𝐺𝑥))
1311, 12oveqan12d 7412 . . . 4 ((𝑦 = 𝐹𝑧 = 𝐺) → ((𝑦𝑥)(.r‘(𝑅𝑥))(𝑧𝑥)) = ((𝐹𝑥)(.r‘(𝑅𝑥))(𝐺𝑥)))
1413adantl 482 . . 3 ((𝜑 ∧ (𝑦 = 𝐹𝑧 = 𝐺)) → ((𝑦𝑥)(.r‘(𝑅𝑥))(𝑧𝑥)) = ((𝐹𝑥)(.r‘(𝑅𝑥))(𝐺𝑥)))
1514mpteq2dv 5243 . 2 ((𝜑 ∧ (𝑦 = 𝐹𝑧 = 𝐺)) → (𝑥𝐼 ↦ ((𝑦𝑥)(.r‘(𝑅𝑥))(𝑧𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)(.r‘(𝑅𝑥))(𝐺𝑥))))
16 prdsplusgval.f . 2 (𝜑𝐹𝐵)
17 prdsplusgval.g . 2 (𝜑𝐺𝐵)
184mptexd 7210 . 2 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥)(.r‘(𝑅𝑥))(𝐺𝑥))) ∈ V)
1910, 15, 16, 17, 18ovmpod 7543 1 (𝜑 → (𝐹 · 𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥)(.r‘(𝑅𝑥))(𝐺𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3473  cmpt 5224   Fn wfn 6527  cfv 6532  (class class class)co 7393  Basecbs 17126  .rcmulr 17180  Xscprds 17373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-map 8805  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-sup 9419  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-dec 12660  df-uz 12805  df-fz 13467  df-struct 17062  df-slot 17097  df-ndx 17109  df-base 17127  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-prds 17375
This theorem is referenced by:  prdsmulrfval  17404  pwsmulrval  17419  xpsmul  17503  prdsmulrcl  20088  prdsringd  20089
  Copyright terms: Public domain W3C validator