MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsvscaval Structured version   Visualization version   GIF version

Theorem prdsvscaval 17418
Description: Scalar multiplication in a structure product is pointwise. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsbasmpt.y 𝑌 = (𝑆Xs𝑅)
prdsbasmpt.b 𝐵 = (Base‘𝑌)
prdsvscaval.t · = ( ·𝑠𝑌)
prdsvscaval.k 𝐾 = (Base‘𝑆)
prdsvscaval.s (𝜑𝑆𝑉)
prdsvscaval.i (𝜑𝐼𝑊)
prdsvscaval.r (𝜑𝑅 Fn 𝐼)
prdsvscaval.f (𝜑𝐹𝐾)
prdsvscaval.g (𝜑𝐺𝐵)
Assertion
Ref Expression
prdsvscaval (𝜑 → (𝐹 · 𝐺) = (𝑥𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅𝑥))(𝐺𝑥))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝐼   𝑥,𝑉   𝑥,𝑅   𝑥,𝑆   𝑥,𝑊   𝑥,𝑌
Allowed substitution hints:   · (𝑥)   𝐾(𝑥)

Proof of Theorem prdsvscaval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbasmpt.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdsvscaval.s . . 3 (𝜑𝑆𝑉)
3 prdsvscaval.r . . . 4 (𝜑𝑅 Fn 𝐼)
4 prdsvscaval.i . . . 4 (𝜑𝐼𝑊)
5 fnex 7173 . . . 4 ((𝑅 Fn 𝐼𝐼𝑊) → 𝑅 ∈ V)
63, 4, 5syl2anc 584 . . 3 (𝜑𝑅 ∈ V)
7 prdsbasmpt.b . . 3 𝐵 = (Base‘𝑌)
83fndmd 6605 . . 3 (𝜑 → dom 𝑅 = 𝐼)
9 prdsvscaval.k . . 3 𝐾 = (Base‘𝑆)
10 prdsvscaval.t . . 3 · = ( ·𝑠𝑌)
111, 2, 6, 7, 8, 9, 10prdsvsca 17399 . 2 (𝜑· = (𝑦𝐾, 𝑧𝐵 ↦ (𝑥𝐼 ↦ (𝑦( ·𝑠 ‘(𝑅𝑥))(𝑧𝑥)))))
12 id 22 . . . . 5 (𝑦 = 𝐹𝑦 = 𝐹)
13 fveq1 6839 . . . . 5 (𝑧 = 𝐺 → (𝑧𝑥) = (𝐺𝑥))
1412, 13oveqan12d 7388 . . . 4 ((𝑦 = 𝐹𝑧 = 𝐺) → (𝑦( ·𝑠 ‘(𝑅𝑥))(𝑧𝑥)) = (𝐹( ·𝑠 ‘(𝑅𝑥))(𝐺𝑥)))
1514adantl 481 . . 3 ((𝜑 ∧ (𝑦 = 𝐹𝑧 = 𝐺)) → (𝑦( ·𝑠 ‘(𝑅𝑥))(𝑧𝑥)) = (𝐹( ·𝑠 ‘(𝑅𝑥))(𝐺𝑥)))
1615mpteq2dv 5196 . 2 ((𝜑 ∧ (𝑦 = 𝐹𝑧 = 𝐺)) → (𝑥𝐼 ↦ (𝑦( ·𝑠 ‘(𝑅𝑥))(𝑧𝑥))) = (𝑥𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅𝑥))(𝐺𝑥))))
17 prdsvscaval.f . 2 (𝜑𝐹𝐾)
18 prdsvscaval.g . 2 (𝜑𝐺𝐵)
194mptexd 7180 . 2 (𝜑 → (𝑥𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅𝑥))(𝐺𝑥))) ∈ V)
2011, 16, 17, 18, 19ovmpod 7521 1 (𝜑 → (𝐹 · 𝐺) = (𝑥𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅𝑥))(𝐺𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cmpt 5183   Fn wfn 6494  cfv 6499  (class class class)co 7369  Basecbs 17155   ·𝑠 cvsca 17200  Xscprds 17384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-prds 17386
This theorem is referenced by:  prdsvscafval  17419  pwsvscafval  17433  xpsvsca  17516  prdsvscacl  20850  prdslmodd  20851
  Copyright terms: Public domain W3C validator