MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsplusgval Structured version   Visualization version   GIF version

Theorem prdsplusgval 17488
Description: Value of a componentwise sum in a structure product. (Contributed by Stefan O'Rear, 10-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
prdsbasmpt.y 𝑌 = (𝑆Xs𝑅)
prdsbasmpt.b 𝐵 = (Base‘𝑌)
prdsbasmpt.s (𝜑𝑆𝑉)
prdsbasmpt.i (𝜑𝐼𝑊)
prdsbasmpt.r (𝜑𝑅 Fn 𝐼)
prdsplusgval.f (𝜑𝐹𝐵)
prdsplusgval.g (𝜑𝐺𝐵)
prdsplusgval.p + = (+g𝑌)
Assertion
Ref Expression
prdsplusgval (𝜑 → (𝐹 + 𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝐼   𝑥,𝑉   𝑥,𝑅   𝑥,𝑆   𝑥,𝑊   𝑥,𝑌
Allowed substitution hint:   + (𝑥)

Proof of Theorem prdsplusgval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbasmpt.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdsbasmpt.s . . 3 (𝜑𝑆𝑉)
3 prdsbasmpt.r . . . 4 (𝜑𝑅 Fn 𝐼)
4 prdsbasmpt.i . . . 4 (𝜑𝐼𝑊)
5 fnex 7234 . . . 4 ((𝑅 Fn 𝐼𝐼𝑊) → 𝑅 ∈ V)
63, 4, 5syl2anc 582 . . 3 (𝜑𝑅 ∈ V)
7 prdsbasmpt.b . . 3 𝐵 = (Base‘𝑌)
83fndmd 6665 . . 3 (𝜑 → dom 𝑅 = 𝐼)
9 prdsplusgval.p . . 3 + = (+g𝑌)
101, 2, 6, 7, 8, 9prdsplusg 17473 . 2 (𝜑+ = (𝑦𝐵, 𝑧𝐵 ↦ (𝑥𝐼 ↦ ((𝑦𝑥)(+g‘(𝑅𝑥))(𝑧𝑥)))))
11 fveq1 6900 . . . . 5 (𝑦 = 𝐹 → (𝑦𝑥) = (𝐹𝑥))
12 fveq1 6900 . . . . 5 (𝑧 = 𝐺 → (𝑧𝑥) = (𝐺𝑥))
1311, 12oveqan12d 7443 . . . 4 ((𝑦 = 𝐹𝑧 = 𝐺) → ((𝑦𝑥)(+g‘(𝑅𝑥))(𝑧𝑥)) = ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥)))
1413adantl 480 . . 3 ((𝜑 ∧ (𝑦 = 𝐹𝑧 = 𝐺)) → ((𝑦𝑥)(+g‘(𝑅𝑥))(𝑧𝑥)) = ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥)))
1514mpteq2dv 5255 . 2 ((𝜑 ∧ (𝑦 = 𝐹𝑧 = 𝐺)) → (𝑥𝐼 ↦ ((𝑦𝑥)(+g‘(𝑅𝑥))(𝑧𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥))))
16 prdsplusgval.f . 2 (𝜑𝐹𝐵)
17 prdsplusgval.g . 2 (𝜑𝐺𝐵)
184mptexd 7241 . 2 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥))) ∈ V)
1910, 15, 16, 17, 18ovmpod 7578 1 (𝜑 → (𝐹 + 𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  Vcvv 3462  cmpt 5236   Fn wfn 6549  cfv 6554  (class class class)co 7424  Basecbs 17213  +gcplusg 17266  Xscprds 17460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-map 8857  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-sup 9485  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-fz 13539  df-struct 17149  df-slot 17184  df-ndx 17196  df-base 17214  df-plusg 17279  df-mulr 17280  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-hom 17290  df-cco 17291  df-prds 17462
This theorem is referenced by:  prdsplusgfval  17489  pwsplusgval  17505  xpsadd  17589  prdsplusgsgrpcl  18725  prdssgrpd  18726  prdsplusgcl  18758  prdsidlem  18759  prdsmndd  18760  prdsinvlem  19043  prdscmnd  19859  prdsrngd  20159  prdsringd  20300  prdslmodd  20946  prdstmdd  24119
  Copyright terms: Public domain W3C validator