![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prdsplusgval | Structured version Visualization version GIF version |
Description: Value of a componentwise sum in a structure product. (Contributed by Stefan O'Rear, 10-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) |
Ref | Expression |
---|---|
prdsbasmpt.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prdsbasmpt.b | ⊢ 𝐵 = (Base‘𝑌) |
prdsbasmpt.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prdsbasmpt.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdsbasmpt.r | ⊢ (𝜑 → 𝑅 Fn 𝐼) |
prdsplusgval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
prdsplusgval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
prdsplusgval.p | ⊢ + = (+g‘𝑌) |
Ref | Expression |
---|---|
prdsplusgval | ⊢ (𝜑 → (𝐹 + 𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsbasmpt.y | . . 3 ⊢ 𝑌 = (𝑆Xs𝑅) | |
2 | prdsbasmpt.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
3 | prdsbasmpt.r | . . . 4 ⊢ (𝜑 → 𝑅 Fn 𝐼) | |
4 | prdsbasmpt.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | fnex 7234 | . . . 4 ⊢ ((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑊) → 𝑅 ∈ V) | |
6 | 3, 4, 5 | syl2anc 582 | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) |
7 | prdsbasmpt.b | . . 3 ⊢ 𝐵 = (Base‘𝑌) | |
8 | 3 | fndmd 6665 | . . 3 ⊢ (𝜑 → dom 𝑅 = 𝐼) |
9 | prdsplusgval.p | . . 3 ⊢ + = (+g‘𝑌) | |
10 | 1, 2, 6, 7, 8, 9 | prdsplusg 17473 | . 2 ⊢ (𝜑 → + = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑦‘𝑥)(+g‘(𝑅‘𝑥))(𝑧‘𝑥))))) |
11 | fveq1 6900 | . . . . 5 ⊢ (𝑦 = 𝐹 → (𝑦‘𝑥) = (𝐹‘𝑥)) | |
12 | fveq1 6900 | . . . . 5 ⊢ (𝑧 = 𝐺 → (𝑧‘𝑥) = (𝐺‘𝑥)) | |
13 | 11, 12 | oveqan12d 7443 | . . . 4 ⊢ ((𝑦 = 𝐹 ∧ 𝑧 = 𝐺) → ((𝑦‘𝑥)(+g‘(𝑅‘𝑥))(𝑧‘𝑥)) = ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥))) |
14 | 13 | adantl 480 | . . 3 ⊢ ((𝜑 ∧ (𝑦 = 𝐹 ∧ 𝑧 = 𝐺)) → ((𝑦‘𝑥)(+g‘(𝑅‘𝑥))(𝑧‘𝑥)) = ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥))) |
15 | 14 | mpteq2dv 5255 | . 2 ⊢ ((𝜑 ∧ (𝑦 = 𝐹 ∧ 𝑧 = 𝐺)) → (𝑥 ∈ 𝐼 ↦ ((𝑦‘𝑥)(+g‘(𝑅‘𝑥))(𝑧‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥)))) |
16 | prdsplusgval.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
17 | prdsplusgval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
18 | 4 | mptexd 7241 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥))) ∈ V) |
19 | 10, 15, 16, 17, 18 | ovmpod 7578 | 1 ⊢ (𝜑 → (𝐹 + 𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ↦ cmpt 5236 Fn wfn 6549 ‘cfv 6554 (class class class)co 7424 Basecbs 17213 +gcplusg 17266 Xscprds 17460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-map 8857 df-ixp 8927 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-sup 9485 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-fz 13539 df-struct 17149 df-slot 17184 df-ndx 17196 df-base 17214 df-plusg 17279 df-mulr 17280 df-sca 17282 df-vsca 17283 df-ip 17284 df-tset 17285 df-ple 17286 df-ds 17288 df-hom 17290 df-cco 17291 df-prds 17462 |
This theorem is referenced by: prdsplusgfval 17489 pwsplusgval 17505 xpsadd 17589 prdsplusgsgrpcl 18725 prdssgrpd 18726 prdsplusgcl 18758 prdsidlem 18759 prdsmndd 18760 prdsinvlem 19043 prdscmnd 19859 prdsrngd 20159 prdsringd 20300 prdslmodd 20946 prdstmdd 24119 |
Copyright terms: Public domain | W3C validator |