MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfac Structured version   Visualization version   GIF version

Theorem logfac 26543
Description: The logarithm of a factorial can be expressed as a finite sum of logs. (Contributed by Mario Carneiro, 17-Apr-2015.)
Assertion
Ref Expression
logfac (𝑁 ∈ ℕ0 → (log‘(!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(log‘𝑘))
Distinct variable group:   𝑘,𝑁

Proof of Theorem logfac
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 elnn0 12389 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 rpmulcl 12921 . . . . . 6 ((𝑘 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑘 · 𝑛) ∈ ℝ+)
32adantl 481 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑘 ∈ ℝ+𝑛 ∈ ℝ+)) → (𝑘 · 𝑛) ∈ ℝ+)
4 fvi 6904 . . . . . . 7 (𝑘 ∈ V → ( I ‘𝑘) = 𝑘)
54elv 3441 . . . . . 6 ( I ‘𝑘) = 𝑘
6 elfznn 13459 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
76adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ)
87nnrpd 12938 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℝ+)
95, 8eqeltrid 2835 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → ( I ‘𝑘) ∈ ℝ+)
10 elnnuz 12782 . . . . . 6 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
1110biimpi 216 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
12 relogmul 26534 . . . . . 6 ((𝑘 ∈ ℝ+𝑛 ∈ ℝ+) → (log‘(𝑘 · 𝑛)) = ((log‘𝑘) + (log‘𝑛)))
1312adantl 481 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑘 ∈ ℝ+𝑛 ∈ ℝ+)) → (log‘(𝑘 · 𝑛)) = ((log‘𝑘) + (log‘𝑛)))
145fveq2i 6831 . . . . . 6 (log‘( I ‘𝑘)) = (log‘𝑘)
1514a1i 11 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (log‘( I ‘𝑘)) = (log‘𝑘))
163, 9, 11, 13, 15seqhomo 13962 . . . 4 (𝑁 ∈ ℕ → (log‘(seq1( · , I )‘𝑁)) = (seq1( + , log)‘𝑁))
17 facnn 14188 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))
1817fveq2d 6832 . . . 4 (𝑁 ∈ ℕ → (log‘(!‘𝑁)) = (log‘(seq1( · , I )‘𝑁)))
19 eqidd 2732 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (log‘𝑘) = (log‘𝑘))
20 relogcl 26517 . . . . . . 7 (𝑘 ∈ ℝ+ → (log‘𝑘) ∈ ℝ)
218, 20syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (log‘𝑘) ∈ ℝ)
2221recnd 11146 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (log‘𝑘) ∈ ℂ)
2319, 11, 22fsumser 15643 . . . 4 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...𝑁)(log‘𝑘) = (seq1( + , log)‘𝑁))
2416, 18, 233eqtr4d 2776 . . 3 (𝑁 ∈ ℕ → (log‘(!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(log‘𝑘))
25 log1 26527 . . . . 5 (log‘1) = 0
26 sum0 15634 . . . . 5 Σ𝑘 ∈ ∅ (log‘𝑘) = 0
2725, 26eqtr4i 2757 . . . 4 (log‘1) = Σ𝑘 ∈ ∅ (log‘𝑘)
28 fveq2 6828 . . . . . 6 (𝑁 = 0 → (!‘𝑁) = (!‘0))
29 fac0 14189 . . . . . 6 (!‘0) = 1
3028, 29eqtrdi 2782 . . . . 5 (𝑁 = 0 → (!‘𝑁) = 1)
3130fveq2d 6832 . . . 4 (𝑁 = 0 → (log‘(!‘𝑁)) = (log‘1))
32 oveq2 7360 . . . . . 6 (𝑁 = 0 → (1...𝑁) = (1...0))
33 fz10 13451 . . . . . 6 (1...0) = ∅
3432, 33eqtrdi 2782 . . . . 5 (𝑁 = 0 → (1...𝑁) = ∅)
3534sumeq1d 15613 . . . 4 (𝑁 = 0 → Σ𝑘 ∈ (1...𝑁)(log‘𝑘) = Σ𝑘 ∈ ∅ (log‘𝑘))
3627, 31, 353eqtr4a 2792 . . 3 (𝑁 = 0 → (log‘(!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(log‘𝑘))
3724, 36jaoi 857 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (log‘(!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(log‘𝑘))
381, 37sylbi 217 1 (𝑁 ∈ ℕ0 → (log‘(!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(log‘𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  Vcvv 3436  c0 4282   I cid 5513  cfv 6487  (class class class)co 7352  cr 11011  0cc0 11012  1c1 11013   + caddc 11015   · cmul 11017  cn 12131  0cn0 12387  cuz 12738  +crp 12896  ...cfz 13413  seqcseq 13914  !cfa 14186  Σcsu 15599  logclog 26496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9537  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090  ax-addf 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-9 12201  df-n0 12388  df-z 12475  df-dec 12595  df-uz 12739  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13255  df-ioc 13256  df-ico 13257  df-icc 13258  df-fz 13414  df-fzo 13561  df-fl 13702  df-mod 13780  df-seq 13915  df-exp 13975  df-fac 14187  df-bc 14216  df-hash 14244  df-shft 14980  df-cj 15012  df-re 15013  df-im 15014  df-sqrt 15148  df-abs 15149  df-limsup 15384  df-clim 15401  df-rlim 15402  df-sum 15600  df-ef 15980  df-sin 15982  df-cos 15983  df-pi 15985  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-starv 17182  df-sca 17183  df-vsca 17184  df-ip 17185  df-tset 17186  df-ple 17187  df-ds 17189  df-unif 17190  df-hom 17191  df-cco 17192  df-rest 17332  df-topn 17333  df-0g 17351  df-gsum 17352  df-topgen 17353  df-pt 17354  df-prds 17357  df-xrs 17412  df-qtop 17417  df-imas 17418  df-xps 17420  df-mre 17494  df-mrc 17495  df-acs 17497  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-submnd 18698  df-mulg 18987  df-cntz 19235  df-cmn 19700  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-fbas 21294  df-fg 21295  df-cnfld 21298  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-cld 22940  df-ntr 22941  df-cls 22942  df-nei 23019  df-lp 23057  df-perf 23058  df-cn 23148  df-cnp 23149  df-haus 23236  df-tx 23483  df-hmeo 23676  df-fil 23767  df-fm 23859  df-flim 23860  df-flf 23861  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801  df-log 26498
This theorem is referenced by:  birthdaylem2  26895  logfac2  27161  logfaclbnd  27166  logfacbnd3  27167
  Copyright terms: Public domain W3C validator