| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > logfac | Structured version Visualization version GIF version | ||
| Description: The logarithm of a factorial can be expressed as a finite sum of logs. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| Ref | Expression |
|---|---|
| logfac | ⊢ (𝑁 ∈ ℕ0 → (log‘(!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(log‘𝑘)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12503 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | rpmulcl 13032 | . . . . . 6 ⊢ ((𝑘 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+) → (𝑘 · 𝑛) ∈ ℝ+) | |
| 3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝑘 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)) → (𝑘 · 𝑛) ∈ ℝ+) |
| 4 | fvi 6955 | . . . . . . 7 ⊢ (𝑘 ∈ V → ( I ‘𝑘) = 𝑘) | |
| 5 | 4 | elv 3464 | . . . . . 6 ⊢ ( I ‘𝑘) = 𝑘 |
| 6 | elfznn 13570 | . . . . . . . 8 ⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) | |
| 7 | 6 | adantl 481 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ) |
| 8 | 7 | nnrpd 13049 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℝ+) |
| 9 | 5, 8 | eqeltrid 2838 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → ( I ‘𝑘) ∈ ℝ+) |
| 10 | elnnuz 12896 | . . . . . 6 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | |
| 11 | 10 | biimpi 216 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ≥‘1)) |
| 12 | relogmul 26553 | . . . . . 6 ⊢ ((𝑘 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+) → (log‘(𝑘 · 𝑛)) = ((log‘𝑘) + (log‘𝑛))) | |
| 13 | 12 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝑘 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)) → (log‘(𝑘 · 𝑛)) = ((log‘𝑘) + (log‘𝑛))) |
| 14 | 5 | fveq2i 6879 | . . . . . 6 ⊢ (log‘( I ‘𝑘)) = (log‘𝑘) |
| 15 | 14 | a1i 11 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (log‘( I ‘𝑘)) = (log‘𝑘)) |
| 16 | 3, 9, 11, 13, 15 | seqhomo 14067 | . . . 4 ⊢ (𝑁 ∈ ℕ → (log‘(seq1( · , I )‘𝑁)) = (seq1( + , log)‘𝑁)) |
| 17 | facnn 14293 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁)) | |
| 18 | 17 | fveq2d 6880 | . . . 4 ⊢ (𝑁 ∈ ℕ → (log‘(!‘𝑁)) = (log‘(seq1( · , I )‘𝑁))) |
| 19 | eqidd 2736 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (log‘𝑘) = (log‘𝑘)) | |
| 20 | relogcl 26536 | . . . . . . 7 ⊢ (𝑘 ∈ ℝ+ → (log‘𝑘) ∈ ℝ) | |
| 21 | 8, 20 | syl 17 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (log‘𝑘) ∈ ℝ) |
| 22 | 21 | recnd 11263 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (log‘𝑘) ∈ ℂ) |
| 23 | 19, 11, 22 | fsumser 15746 | . . . 4 ⊢ (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...𝑁)(log‘𝑘) = (seq1( + , log)‘𝑁)) |
| 24 | 16, 18, 23 | 3eqtr4d 2780 | . . 3 ⊢ (𝑁 ∈ ℕ → (log‘(!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(log‘𝑘)) |
| 25 | log1 26546 | . . . . 5 ⊢ (log‘1) = 0 | |
| 26 | sum0 15737 | . . . . 5 ⊢ Σ𝑘 ∈ ∅ (log‘𝑘) = 0 | |
| 27 | 25, 26 | eqtr4i 2761 | . . . 4 ⊢ (log‘1) = Σ𝑘 ∈ ∅ (log‘𝑘) |
| 28 | fveq2 6876 | . . . . . 6 ⊢ (𝑁 = 0 → (!‘𝑁) = (!‘0)) | |
| 29 | fac0 14294 | . . . . . 6 ⊢ (!‘0) = 1 | |
| 30 | 28, 29 | eqtrdi 2786 | . . . . 5 ⊢ (𝑁 = 0 → (!‘𝑁) = 1) |
| 31 | 30 | fveq2d 6880 | . . . 4 ⊢ (𝑁 = 0 → (log‘(!‘𝑁)) = (log‘1)) |
| 32 | oveq2 7413 | . . . . . 6 ⊢ (𝑁 = 0 → (1...𝑁) = (1...0)) | |
| 33 | fz10 13562 | . . . . . 6 ⊢ (1...0) = ∅ | |
| 34 | 32, 33 | eqtrdi 2786 | . . . . 5 ⊢ (𝑁 = 0 → (1...𝑁) = ∅) |
| 35 | 34 | sumeq1d 15716 | . . . 4 ⊢ (𝑁 = 0 → Σ𝑘 ∈ (1...𝑁)(log‘𝑘) = Σ𝑘 ∈ ∅ (log‘𝑘)) |
| 36 | 27, 31, 35 | 3eqtr4a 2796 | . . 3 ⊢ (𝑁 = 0 → (log‘(!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(log‘𝑘)) |
| 37 | 24, 36 | jaoi 857 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (log‘(!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(log‘𝑘)) |
| 38 | 1, 37 | sylbi 217 | 1 ⊢ (𝑁 ∈ ℕ0 → (log‘(!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(log‘𝑘)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 I cid 5547 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 0cc0 11129 1c1 11130 + caddc 11132 · cmul 11134 ℕcn 12240 ℕ0cn0 12501 ℤ≥cuz 12852 ℝ+crp 13008 ...cfz 13524 seqcseq 14019 !cfa 14291 Σcsu 15702 logclog 26515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-ioc 13367 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-mod 13887 df-seq 14020 df-exp 14080 df-fac 14292 df-bc 14321 df-hash 14349 df-shft 15086 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-limsup 15487 df-clim 15504 df-rlim 15505 df-sum 15703 df-ef 16083 df-sin 16085 df-cos 16086 df-pi 16088 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-xrs 17516 df-qtop 17521 df-imas 17522 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-mulg 19051 df-cntz 19300 df-cmn 19763 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-fbas 21312 df-fg 21313 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cld 22957 df-ntr 22958 df-cls 22959 df-nei 23036 df-lp 23074 df-perf 23075 df-cn 23165 df-cnp 23166 df-haus 23253 df-tx 23500 df-hmeo 23693 df-fil 23784 df-fm 23876 df-flim 23877 df-flf 23878 df-xms 24259 df-ms 24260 df-tms 24261 df-cncf 24822 df-limc 25819 df-dv 25820 df-log 26517 |
| This theorem is referenced by: birthdaylem2 26914 logfac2 27180 logfaclbnd 27185 logfacbnd3 27186 |
| Copyright terms: Public domain | W3C validator |