![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > logfac | Structured version Visualization version GIF version |
Description: The logarithm of a factorial can be expressed as a finite sum of logs. (Contributed by Mario Carneiro, 17-Apr-2015.) |
Ref | Expression |
---|---|
logfac | ⊢ (𝑁 ∈ ℕ0 → (log‘(!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(log‘𝑘)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12469 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | rpmulcl 12992 | . . . . . 6 ⊢ ((𝑘 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+) → (𝑘 · 𝑛) ∈ ℝ+) | |
3 | 2 | adantl 483 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝑘 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)) → (𝑘 · 𝑛) ∈ ℝ+) |
4 | fvi 6962 | . . . . . . 7 ⊢ (𝑘 ∈ V → ( I ‘𝑘) = 𝑘) | |
5 | 4 | elv 3481 | . . . . . 6 ⊢ ( I ‘𝑘) = 𝑘 |
6 | elfznn 13525 | . . . . . . . 8 ⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) | |
7 | 6 | adantl 483 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ) |
8 | 7 | nnrpd 13009 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℝ+) |
9 | 5, 8 | eqeltrid 2838 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → ( I ‘𝑘) ∈ ℝ+) |
10 | elnnuz 12861 | . . . . . 6 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | |
11 | 10 | biimpi 215 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ≥‘1)) |
12 | relogmul 26081 | . . . . . 6 ⊢ ((𝑘 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+) → (log‘(𝑘 · 𝑛)) = ((log‘𝑘) + (log‘𝑛))) | |
13 | 12 | adantl 483 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝑘 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)) → (log‘(𝑘 · 𝑛)) = ((log‘𝑘) + (log‘𝑛))) |
14 | 5 | fveq2i 6890 | . . . . . 6 ⊢ (log‘( I ‘𝑘)) = (log‘𝑘) |
15 | 14 | a1i 11 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (log‘( I ‘𝑘)) = (log‘𝑘)) |
16 | 3, 9, 11, 13, 15 | seqhomo 14010 | . . . 4 ⊢ (𝑁 ∈ ℕ → (log‘(seq1( · , I )‘𝑁)) = (seq1( + , log)‘𝑁)) |
17 | facnn 14230 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁)) | |
18 | 17 | fveq2d 6891 | . . . 4 ⊢ (𝑁 ∈ ℕ → (log‘(!‘𝑁)) = (log‘(seq1( · , I )‘𝑁))) |
19 | eqidd 2734 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (log‘𝑘) = (log‘𝑘)) | |
20 | relogcl 26065 | . . . . . . 7 ⊢ (𝑘 ∈ ℝ+ → (log‘𝑘) ∈ ℝ) | |
21 | 8, 20 | syl 17 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (log‘𝑘) ∈ ℝ) |
22 | 21 | recnd 11237 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (log‘𝑘) ∈ ℂ) |
23 | 19, 11, 22 | fsumser 15671 | . . . 4 ⊢ (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...𝑁)(log‘𝑘) = (seq1( + , log)‘𝑁)) |
24 | 16, 18, 23 | 3eqtr4d 2783 | . . 3 ⊢ (𝑁 ∈ ℕ → (log‘(!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(log‘𝑘)) |
25 | log1 26075 | . . . . 5 ⊢ (log‘1) = 0 | |
26 | sum0 15662 | . . . . 5 ⊢ Σ𝑘 ∈ ∅ (log‘𝑘) = 0 | |
27 | 25, 26 | eqtr4i 2764 | . . . 4 ⊢ (log‘1) = Σ𝑘 ∈ ∅ (log‘𝑘) |
28 | fveq2 6887 | . . . . . 6 ⊢ (𝑁 = 0 → (!‘𝑁) = (!‘0)) | |
29 | fac0 14231 | . . . . . 6 ⊢ (!‘0) = 1 | |
30 | 28, 29 | eqtrdi 2789 | . . . . 5 ⊢ (𝑁 = 0 → (!‘𝑁) = 1) |
31 | 30 | fveq2d 6891 | . . . 4 ⊢ (𝑁 = 0 → (log‘(!‘𝑁)) = (log‘1)) |
32 | oveq2 7411 | . . . . . 6 ⊢ (𝑁 = 0 → (1...𝑁) = (1...0)) | |
33 | fz10 13517 | . . . . . 6 ⊢ (1...0) = ∅ | |
34 | 32, 33 | eqtrdi 2789 | . . . . 5 ⊢ (𝑁 = 0 → (1...𝑁) = ∅) |
35 | 34 | sumeq1d 15642 | . . . 4 ⊢ (𝑁 = 0 → Σ𝑘 ∈ (1...𝑁)(log‘𝑘) = Σ𝑘 ∈ ∅ (log‘𝑘)) |
36 | 27, 31, 35 | 3eqtr4a 2799 | . . 3 ⊢ (𝑁 = 0 → (log‘(!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(log‘𝑘)) |
37 | 24, 36 | jaoi 856 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (log‘(!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(log‘𝑘)) |
38 | 1, 37 | sylbi 216 | 1 ⊢ (𝑁 ∈ ℕ0 → (log‘(!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(log‘𝑘)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∅c0 4320 I cid 5571 ‘cfv 6539 (class class class)co 7403 ℝcr 11104 0cc0 11105 1c1 11106 + caddc 11108 · cmul 11110 ℕcn 12207 ℕ0cn0 12467 ℤ≥cuz 12817 ℝ+crp 12969 ...cfz 13479 seqcseq 13961 !cfa 14228 Σcsu 15627 logclog 26044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5283 ax-sep 5297 ax-nul 5304 ax-pow 5361 ax-pr 5425 ax-un 7719 ax-inf2 9631 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 ax-addf 11184 ax-mulf 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4907 df-int 4949 df-iun 4997 df-iin 4998 df-br 5147 df-opab 5209 df-mpt 5230 df-tr 5264 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6296 df-ord 6363 df-on 6364 df-lim 6365 df-suc 6366 df-iota 6491 df-fun 6541 df-fn 6542 df-f 6543 df-f1 6544 df-fo 6545 df-f1o 6546 df-fv 6547 df-isom 6548 df-riota 7359 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-supp 8141 df-frecs 8260 df-wrecs 8291 df-recs 8365 df-rdg 8404 df-1o 8460 df-2o 8461 df-er 8698 df-map 8817 df-pm 8818 df-ixp 8887 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-fsupp 9357 df-fi 9401 df-sup 9432 df-inf 9433 df-oi 9500 df-card 9929 df-pnf 11245 df-mnf 11246 df-xr 11247 df-ltxr 11248 df-le 11249 df-sub 11441 df-neg 11442 df-div 11867 df-nn 12208 df-2 12270 df-3 12271 df-4 12272 df-5 12273 df-6 12274 df-7 12275 df-8 12276 df-9 12277 df-n0 12468 df-z 12554 df-dec 12673 df-uz 12818 df-q 12928 df-rp 12970 df-xneg 13087 df-xadd 13088 df-xmul 13089 df-ioo 13323 df-ioc 13324 df-ico 13325 df-icc 13326 df-fz 13480 df-fzo 13623 df-fl 13752 df-mod 13830 df-seq 13962 df-exp 14023 df-fac 14229 df-bc 14258 df-hash 14286 df-shft 15009 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-limsup 15410 df-clim 15427 df-rlim 15428 df-sum 15628 df-ef 16006 df-sin 16008 df-cos 16009 df-pi 16011 df-struct 17075 df-sets 17092 df-slot 17110 df-ndx 17122 df-base 17140 df-ress 17169 df-plusg 17205 df-mulr 17206 df-starv 17207 df-sca 17208 df-vsca 17209 df-ip 17210 df-tset 17211 df-ple 17212 df-ds 17214 df-unif 17215 df-hom 17216 df-cco 17217 df-rest 17363 df-topn 17364 df-0g 17382 df-gsum 17383 df-topgen 17384 df-pt 17385 df-prds 17388 df-xrs 17443 df-qtop 17448 df-imas 17449 df-xps 17451 df-mre 17525 df-mrc 17526 df-acs 17528 df-mgm 18556 df-sgrp 18605 df-mnd 18621 df-submnd 18667 df-mulg 18944 df-cntz 19174 df-cmn 19642 df-psmet 20920 df-xmet 20921 df-met 20922 df-bl 20923 df-mopn 20924 df-fbas 20925 df-fg 20926 df-cnfld 20929 df-top 22377 df-topon 22394 df-topsp 22416 df-bases 22430 df-cld 22504 df-ntr 22505 df-cls 22506 df-nei 22583 df-lp 22621 df-perf 22622 df-cn 22712 df-cnp 22713 df-haus 22800 df-tx 23047 df-hmeo 23240 df-fil 23331 df-fm 23423 df-flim 23424 df-flf 23425 df-xms 23807 df-ms 23808 df-tms 23809 df-cncf 24375 df-limc 25364 df-dv 25365 df-log 26046 |
This theorem is referenced by: birthdaylem2 26436 logfac2 26699 logfaclbnd 26704 logfacbnd3 26705 |
Copyright terms: Public domain | W3C validator |