MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facp1 Structured version   Visualization version   GIF version

Theorem facp1 13920
Description: The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
facp1 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))

Proof of Theorem facp1
StepHypRef Expression
1 elnn0 12165 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 peano2nn 11915 . . . . 5 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
3 facnn 13917 . . . . 5 ((𝑁 + 1) ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1)))
42, 3syl 17 . . . 4 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1)))
5 ovex 7288 . . . . . . 7 (𝑁 + 1) ∈ V
6 fvi 6826 . . . . . . 7 ((𝑁 + 1) ∈ V → ( I ‘(𝑁 + 1)) = (𝑁 + 1))
75, 6ax-mp 5 . . . . . 6 ( I ‘(𝑁 + 1)) = (𝑁 + 1)
87oveq2i 7266 . . . . 5 ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))) = ((seq1( · , I )‘𝑁) · (𝑁 + 1))
9 seqp1 13664 . . . . . 6 (𝑁 ∈ (ℤ‘1) → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))))
10 nnuz 12550 . . . . . 6 ℕ = (ℤ‘1)
119, 10eleq2s 2857 . . . . 5 (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))))
12 facnn 13917 . . . . . 6 (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))
1312oveq1d 7270 . . . . 5 (𝑁 ∈ ℕ → ((!‘𝑁) · (𝑁 + 1)) = ((seq1( · , I )‘𝑁) · (𝑁 + 1)))
148, 11, 133eqtr4a 2805 . . . 4 (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
154, 14eqtrd 2778 . . 3 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
16 0p1e1 12025 . . . . . 6 (0 + 1) = 1
1716fveq2i 6759 . . . . 5 (!‘(0 + 1)) = (!‘1)
18 fac1 13919 . . . . 5 (!‘1) = 1
1917, 18eqtri 2766 . . . 4 (!‘(0 + 1)) = 1
20 fvoveq1 7278 . . . 4 (𝑁 = 0 → (!‘(𝑁 + 1)) = (!‘(0 + 1)))
21 fveq2 6756 . . . . . 6 (𝑁 = 0 → (!‘𝑁) = (!‘0))
22 oveq1 7262 . . . . . 6 (𝑁 = 0 → (𝑁 + 1) = (0 + 1))
2321, 22oveq12d 7273 . . . . 5 (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = ((!‘0) · (0 + 1)))
24 fac0 13918 . . . . . . 7 (!‘0) = 1
2524, 16oveq12i 7267 . . . . . 6 ((!‘0) · (0 + 1)) = (1 · 1)
26 1t1e1 12065 . . . . . 6 (1 · 1) = 1
2725, 26eqtri 2766 . . . . 5 ((!‘0) · (0 + 1)) = 1
2823, 27eqtrdi 2795 . . . 4 (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = 1)
2919, 20, 283eqtr4a 2805 . . 3 (𝑁 = 0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
3015, 29jaoi 853 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
311, 30sylbi 216 1 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843   = wceq 1539  wcel 2108  Vcvv 3422   I cid 5479  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cn 11903  0cn0 12163  cuz 12511  seqcseq 13649  !cfa 13915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-fac 13916
This theorem is referenced by:  fac2  13921  fac3  13922  fac4  13923  facnn2  13924  faccl  13925  facdiv  13929  facwordi  13931  faclbnd  13932  faclbnd6  13941  facubnd  13942  bcm1k  13957  bcp1n  13958  4bc2eq6  13971  efcllem  15715  ef01bndlem  15821  eirrlem  15841  dvdsfac  15963  prmfac1  16354  pcfac  16528  2expltfac  16722  aaliou3lem2  25408  aaliou3lem8  25410  dvtaylp  25434  advlogexp  25715  facgam  26120  bcmono  26330  ex-fac  28716  subfacval2  33049  subfaclim  33050  faclim  33618  faclim2  33620  lcmineqlem18  39982  facp2  40027  fac2xp3  40088  factwoffsmonot  40091  bccp1k  41848  binomcxplemwb  41855  wallispi2lem2  43503  stirlinglem4  43508  etransclem24  43689  etransclem28  43693  etransclem38  43703
  Copyright terms: Public domain W3C validator