| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > facp1 | Structured version Visualization version GIF version | ||
| Description: The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| Ref | Expression |
|---|---|
| facp1 | ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12451 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | peano2nn 12205 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ) | |
| 3 | facnn 14247 | . . . . 5 ⊢ ((𝑁 + 1) ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1))) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1))) |
| 5 | ovex 7423 | . . . . . . 7 ⊢ (𝑁 + 1) ∈ V | |
| 6 | fvi 6940 | . . . . . . 7 ⊢ ((𝑁 + 1) ∈ V → ( I ‘(𝑁 + 1)) = (𝑁 + 1)) | |
| 7 | 5, 6 | ax-mp 5 | . . . . . 6 ⊢ ( I ‘(𝑁 + 1)) = (𝑁 + 1) |
| 8 | 7 | oveq2i 7401 | . . . . 5 ⊢ ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))) = ((seq1( · , I )‘𝑁) · (𝑁 + 1)) |
| 9 | seqp1 13988 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘1) → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1)))) | |
| 10 | nnuz 12843 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
| 11 | 9, 10 | eleq2s 2847 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1)))) |
| 12 | facnn 14247 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁)) | |
| 13 | 12 | oveq1d 7405 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((!‘𝑁) · (𝑁 + 1)) = ((seq1( · , I )‘𝑁) · (𝑁 + 1))) |
| 14 | 8, 11, 13 | 3eqtr4a 2791 | . . . 4 ⊢ (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| 15 | 4, 14 | eqtrd 2765 | . . 3 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| 16 | 0p1e1 12310 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 17 | 16 | fveq2i 6864 | . . . . 5 ⊢ (!‘(0 + 1)) = (!‘1) |
| 18 | fac1 14249 | . . . . 5 ⊢ (!‘1) = 1 | |
| 19 | 17, 18 | eqtri 2753 | . . . 4 ⊢ (!‘(0 + 1)) = 1 |
| 20 | fvoveq1 7413 | . . . 4 ⊢ (𝑁 = 0 → (!‘(𝑁 + 1)) = (!‘(0 + 1))) | |
| 21 | fveq2 6861 | . . . . . 6 ⊢ (𝑁 = 0 → (!‘𝑁) = (!‘0)) | |
| 22 | oveq1 7397 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 + 1) = (0 + 1)) | |
| 23 | 21, 22 | oveq12d 7408 | . . . . 5 ⊢ (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = ((!‘0) · (0 + 1))) |
| 24 | fac0 14248 | . . . . . . 7 ⊢ (!‘0) = 1 | |
| 25 | 24, 16 | oveq12i 7402 | . . . . . 6 ⊢ ((!‘0) · (0 + 1)) = (1 · 1) |
| 26 | 1t1e1 12350 | . . . . . 6 ⊢ (1 · 1) = 1 | |
| 27 | 25, 26 | eqtri 2753 | . . . . 5 ⊢ ((!‘0) · (0 + 1)) = 1 |
| 28 | 23, 27 | eqtrdi 2781 | . . . 4 ⊢ (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = 1) |
| 29 | 19, 20, 28 | 3eqtr4a 2791 | . . 3 ⊢ (𝑁 = 0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| 30 | 15, 29 | jaoi 857 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| 31 | 1, 30 | sylbi 217 | 1 ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3450 I cid 5535 ‘cfv 6514 (class class class)co 7390 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 ℕcn 12193 ℕ0cn0 12449 ℤ≥cuz 12800 seqcseq 13973 !cfa 14245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-seq 13974 df-fac 14246 |
| This theorem is referenced by: fac2 14251 fac3 14252 fac4 14253 facnn2 14254 faccl 14255 facdiv 14259 facwordi 14261 faclbnd 14262 faclbnd6 14271 facubnd 14272 bcm1k 14287 bcp1n 14288 4bc2eq6 14301 efcllem 16050 ef01bndlem 16159 eirrlem 16179 dvdsfac 16303 prmfac1 16697 pcfac 16877 2expltfac 17070 aaliou3lem2 26258 aaliou3lem8 26260 dvtaylp 26285 advlogexp 26571 facgam 26983 bcmono 27195 ex-fac 30387 subfacval2 35181 subfaclim 35182 faclim 35740 faclim2 35742 lcmineqlem18 42041 facp2 42138 bccp1k 44337 binomcxplemwb 44344 wallispi2lem2 46077 stirlinglem4 46082 etransclem24 46263 etransclem28 46267 etransclem38 46277 |
| Copyright terms: Public domain | W3C validator |