MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facp1 Structured version   Visualization version   GIF version

Theorem facp1 14296
Description: The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
facp1 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))

Proof of Theorem facp1
StepHypRef Expression
1 elnn0 12503 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 peano2nn 12252 . . . . 5 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
3 facnn 14293 . . . . 5 ((𝑁 + 1) ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1)))
42, 3syl 17 . . . 4 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1)))
5 ovex 7438 . . . . . . 7 (𝑁 + 1) ∈ V
6 fvi 6955 . . . . . . 7 ((𝑁 + 1) ∈ V → ( I ‘(𝑁 + 1)) = (𝑁 + 1))
75, 6ax-mp 5 . . . . . 6 ( I ‘(𝑁 + 1)) = (𝑁 + 1)
87oveq2i 7416 . . . . 5 ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))) = ((seq1( · , I )‘𝑁) · (𝑁 + 1))
9 seqp1 14034 . . . . . 6 (𝑁 ∈ (ℤ‘1) → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))))
10 nnuz 12895 . . . . . 6 ℕ = (ℤ‘1)
119, 10eleq2s 2852 . . . . 5 (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))))
12 facnn 14293 . . . . . 6 (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))
1312oveq1d 7420 . . . . 5 (𝑁 ∈ ℕ → ((!‘𝑁) · (𝑁 + 1)) = ((seq1( · , I )‘𝑁) · (𝑁 + 1)))
148, 11, 133eqtr4a 2796 . . . 4 (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
154, 14eqtrd 2770 . . 3 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
16 0p1e1 12362 . . . . . 6 (0 + 1) = 1
1716fveq2i 6879 . . . . 5 (!‘(0 + 1)) = (!‘1)
18 fac1 14295 . . . . 5 (!‘1) = 1
1917, 18eqtri 2758 . . . 4 (!‘(0 + 1)) = 1
20 fvoveq1 7428 . . . 4 (𝑁 = 0 → (!‘(𝑁 + 1)) = (!‘(0 + 1)))
21 fveq2 6876 . . . . . 6 (𝑁 = 0 → (!‘𝑁) = (!‘0))
22 oveq1 7412 . . . . . 6 (𝑁 = 0 → (𝑁 + 1) = (0 + 1))
2321, 22oveq12d 7423 . . . . 5 (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = ((!‘0) · (0 + 1)))
24 fac0 14294 . . . . . . 7 (!‘0) = 1
2524, 16oveq12i 7417 . . . . . 6 ((!‘0) · (0 + 1)) = (1 · 1)
26 1t1e1 12402 . . . . . 6 (1 · 1) = 1
2725, 26eqtri 2758 . . . . 5 ((!‘0) · (0 + 1)) = 1
2823, 27eqtrdi 2786 . . . 4 (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = 1)
2919, 20, 283eqtr4a 2796 . . 3 (𝑁 = 0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
3015, 29jaoi 857 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
311, 30sylbi 217 1 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2108  Vcvv 3459   I cid 5547  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  cn 12240  0cn0 12501  cuz 12852  seqcseq 14019  !cfa 14291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-seq 14020  df-fac 14292
This theorem is referenced by:  fac2  14297  fac3  14298  fac4  14299  facnn2  14300  faccl  14301  facdiv  14305  facwordi  14307  faclbnd  14308  faclbnd6  14317  facubnd  14318  bcm1k  14333  bcp1n  14334  4bc2eq6  14347  efcllem  16093  ef01bndlem  16202  eirrlem  16222  dvdsfac  16345  prmfac1  16739  pcfac  16919  2expltfac  17112  aaliou3lem2  26303  aaliou3lem8  26305  dvtaylp  26330  advlogexp  26616  facgam  27028  bcmono  27240  ex-fac  30432  subfacval2  35209  subfaclim  35210  faclim  35763  faclim2  35765  lcmineqlem18  42059  facp2  42156  fac2xp3  42252  factwoffsmonot  42255  bccp1k  44365  binomcxplemwb  44372  wallispi2lem2  46101  stirlinglem4  46106  etransclem24  46287  etransclem28  46291  etransclem38  46301
  Copyright terms: Public domain W3C validator