| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > facp1 | Structured version Visualization version GIF version | ||
| Description: The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| Ref | Expression |
|---|---|
| facp1 | ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12420 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | peano2nn 12174 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ) | |
| 3 | facnn 14216 | . . . . 5 ⊢ ((𝑁 + 1) ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1))) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1))) |
| 5 | ovex 7402 | . . . . . . 7 ⊢ (𝑁 + 1) ∈ V | |
| 6 | fvi 6919 | . . . . . . 7 ⊢ ((𝑁 + 1) ∈ V → ( I ‘(𝑁 + 1)) = (𝑁 + 1)) | |
| 7 | 5, 6 | ax-mp 5 | . . . . . 6 ⊢ ( I ‘(𝑁 + 1)) = (𝑁 + 1) |
| 8 | 7 | oveq2i 7380 | . . . . 5 ⊢ ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))) = ((seq1( · , I )‘𝑁) · (𝑁 + 1)) |
| 9 | seqp1 13957 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘1) → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1)))) | |
| 10 | nnuz 12812 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
| 11 | 9, 10 | eleq2s 2846 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1)))) |
| 12 | facnn 14216 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁)) | |
| 13 | 12 | oveq1d 7384 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((!‘𝑁) · (𝑁 + 1)) = ((seq1( · , I )‘𝑁) · (𝑁 + 1))) |
| 14 | 8, 11, 13 | 3eqtr4a 2790 | . . . 4 ⊢ (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| 15 | 4, 14 | eqtrd 2764 | . . 3 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| 16 | 0p1e1 12279 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 17 | 16 | fveq2i 6843 | . . . . 5 ⊢ (!‘(0 + 1)) = (!‘1) |
| 18 | fac1 14218 | . . . . 5 ⊢ (!‘1) = 1 | |
| 19 | 17, 18 | eqtri 2752 | . . . 4 ⊢ (!‘(0 + 1)) = 1 |
| 20 | fvoveq1 7392 | . . . 4 ⊢ (𝑁 = 0 → (!‘(𝑁 + 1)) = (!‘(0 + 1))) | |
| 21 | fveq2 6840 | . . . . . 6 ⊢ (𝑁 = 0 → (!‘𝑁) = (!‘0)) | |
| 22 | oveq1 7376 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 + 1) = (0 + 1)) | |
| 23 | 21, 22 | oveq12d 7387 | . . . . 5 ⊢ (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = ((!‘0) · (0 + 1))) |
| 24 | fac0 14217 | . . . . . . 7 ⊢ (!‘0) = 1 | |
| 25 | 24, 16 | oveq12i 7381 | . . . . . 6 ⊢ ((!‘0) · (0 + 1)) = (1 · 1) |
| 26 | 1t1e1 12319 | . . . . . 6 ⊢ (1 · 1) = 1 | |
| 27 | 25, 26 | eqtri 2752 | . . . . 5 ⊢ ((!‘0) · (0 + 1)) = 1 |
| 28 | 23, 27 | eqtrdi 2780 | . . . 4 ⊢ (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = 1) |
| 29 | 19, 20, 28 | 3eqtr4a 2790 | . . 3 ⊢ (𝑁 = 0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| 30 | 15, 29 | jaoi 857 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| 31 | 1, 30 | sylbi 217 | 1 ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3444 I cid 5525 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 ℕcn 12162 ℕ0cn0 12418 ℤ≥cuz 12769 seqcseq 13942 !cfa 14214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-seq 13943 df-fac 14215 |
| This theorem is referenced by: fac2 14220 fac3 14221 fac4 14222 facnn2 14223 faccl 14224 facdiv 14228 facwordi 14230 faclbnd 14231 faclbnd6 14240 facubnd 14241 bcm1k 14256 bcp1n 14257 4bc2eq6 14270 efcllem 16019 ef01bndlem 16128 eirrlem 16148 dvdsfac 16272 prmfac1 16666 pcfac 16846 2expltfac 17039 aaliou3lem2 26284 aaliou3lem8 26286 dvtaylp 26311 advlogexp 26597 facgam 27009 bcmono 27221 ex-fac 30430 subfacval2 35167 subfaclim 35168 faclim 35726 faclim2 35728 lcmineqlem18 42027 facp2 42124 bccp1k 44323 binomcxplemwb 44330 wallispi2lem2 46063 stirlinglem4 46068 etransclem24 46249 etransclem28 46253 etransclem38 46263 |
| Copyright terms: Public domain | W3C validator |