MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facp1 Structured version   Visualization version   GIF version

Theorem facp1 14185
Description: The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
facp1 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))

Proof of Theorem facp1
StepHypRef Expression
1 elnn0 12386 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 peano2nn 12140 . . . . 5 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
3 facnn 14182 . . . . 5 ((𝑁 + 1) ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1)))
42, 3syl 17 . . . 4 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1)))
5 ovex 7382 . . . . . . 7 (𝑁 + 1) ∈ V
6 fvi 6899 . . . . . . 7 ((𝑁 + 1) ∈ V → ( I ‘(𝑁 + 1)) = (𝑁 + 1))
75, 6ax-mp 5 . . . . . 6 ( I ‘(𝑁 + 1)) = (𝑁 + 1)
87oveq2i 7360 . . . . 5 ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))) = ((seq1( · , I )‘𝑁) · (𝑁 + 1))
9 seqp1 13923 . . . . . 6 (𝑁 ∈ (ℤ‘1) → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))))
10 nnuz 12778 . . . . . 6 ℕ = (ℤ‘1)
119, 10eleq2s 2846 . . . . 5 (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))))
12 facnn 14182 . . . . . 6 (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))
1312oveq1d 7364 . . . . 5 (𝑁 ∈ ℕ → ((!‘𝑁) · (𝑁 + 1)) = ((seq1( · , I )‘𝑁) · (𝑁 + 1)))
148, 11, 133eqtr4a 2790 . . . 4 (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
154, 14eqtrd 2764 . . 3 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
16 0p1e1 12245 . . . . . 6 (0 + 1) = 1
1716fveq2i 6825 . . . . 5 (!‘(0 + 1)) = (!‘1)
18 fac1 14184 . . . . 5 (!‘1) = 1
1917, 18eqtri 2752 . . . 4 (!‘(0 + 1)) = 1
20 fvoveq1 7372 . . . 4 (𝑁 = 0 → (!‘(𝑁 + 1)) = (!‘(0 + 1)))
21 fveq2 6822 . . . . . 6 (𝑁 = 0 → (!‘𝑁) = (!‘0))
22 oveq1 7356 . . . . . 6 (𝑁 = 0 → (𝑁 + 1) = (0 + 1))
2321, 22oveq12d 7367 . . . . 5 (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = ((!‘0) · (0 + 1)))
24 fac0 14183 . . . . . . 7 (!‘0) = 1
2524, 16oveq12i 7361 . . . . . 6 ((!‘0) · (0 + 1)) = (1 · 1)
26 1t1e1 12285 . . . . . 6 (1 · 1) = 1
2725, 26eqtri 2752 . . . . 5 ((!‘0) · (0 + 1)) = 1
2823, 27eqtrdi 2780 . . . 4 (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = 1)
2919, 20, 283eqtr4a 2790 . . 3 (𝑁 = 0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
3015, 29jaoi 857 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
311, 30sylbi 217 1 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109  Vcvv 3436   I cid 5513  cfv 6482  (class class class)co 7349  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  cn 12128  0cn0 12384  cuz 12735  seqcseq 13908  !cfa 14180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-seq 13909  df-fac 14181
This theorem is referenced by:  fac2  14186  fac3  14187  fac4  14188  facnn2  14189  faccl  14190  facdiv  14194  facwordi  14196  faclbnd  14197  faclbnd6  14206  facubnd  14207  bcm1k  14222  bcp1n  14223  4bc2eq6  14236  efcllem  15984  ef01bndlem  16093  eirrlem  16113  dvdsfac  16237  prmfac1  16631  pcfac  16811  2expltfac  17004  aaliou3lem2  26249  aaliou3lem8  26251  dvtaylp  26276  advlogexp  26562  facgam  26974  bcmono  27186  ex-fac  30395  subfacval2  35170  subfaclim  35171  faclim  35729  faclim2  35731  lcmineqlem18  42029  facp2  42126  bccp1k  44324  binomcxplemwb  44331  wallispi2lem2  46063  stirlinglem4  46068  etransclem24  46249  etransclem28  46253  etransclem38  46263
  Copyright terms: Public domain W3C validator