![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > facp1 | Structured version Visualization version GIF version |
Description: The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
Ref | Expression |
---|---|
facp1 | ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 11582 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | peano2nn 11326 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ) | |
3 | facnn 13315 | . . . . 5 ⊢ ((𝑁 + 1) ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1))) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1))) |
5 | ovex 6910 | . . . . . . 7 ⊢ (𝑁 + 1) ∈ V | |
6 | fvi 6480 | . . . . . . 7 ⊢ ((𝑁 + 1) ∈ V → ( I ‘(𝑁 + 1)) = (𝑁 + 1)) | |
7 | 5, 6 | ax-mp 5 | . . . . . 6 ⊢ ( I ‘(𝑁 + 1)) = (𝑁 + 1) |
8 | 7 | oveq2i 6889 | . . . . 5 ⊢ ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))) = ((seq1( · , I )‘𝑁) · (𝑁 + 1)) |
9 | seqp1 13070 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘1) → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1)))) | |
10 | nnuz 11967 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
11 | 9, 10 | eleq2s 2896 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1)))) |
12 | facnn 13315 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁)) | |
13 | 12 | oveq1d 6893 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((!‘𝑁) · (𝑁 + 1)) = ((seq1( · , I )‘𝑁) · (𝑁 + 1))) |
14 | 8, 11, 13 | 3eqtr4a 2859 | . . . 4 ⊢ (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
15 | 4, 14 | eqtrd 2833 | . . 3 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
16 | 0p1e1 11442 | . . . . . 6 ⊢ (0 + 1) = 1 | |
17 | 16 | fveq2i 6414 | . . . . 5 ⊢ (!‘(0 + 1)) = (!‘1) |
18 | fac1 13317 | . . . . 5 ⊢ (!‘1) = 1 | |
19 | 17, 18 | eqtri 2821 | . . . 4 ⊢ (!‘(0 + 1)) = 1 |
20 | fvoveq1 6901 | . . . 4 ⊢ (𝑁 = 0 → (!‘(𝑁 + 1)) = (!‘(0 + 1))) | |
21 | fveq2 6411 | . . . . . 6 ⊢ (𝑁 = 0 → (!‘𝑁) = (!‘0)) | |
22 | oveq1 6885 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 + 1) = (0 + 1)) | |
23 | 21, 22 | oveq12d 6896 | . . . . 5 ⊢ (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = ((!‘0) · (0 + 1))) |
24 | fac0 13316 | . . . . . . 7 ⊢ (!‘0) = 1 | |
25 | 24, 16 | oveq12i 6890 | . . . . . 6 ⊢ ((!‘0) · (0 + 1)) = (1 · 1) |
26 | 1t1e1 11482 | . . . . . 6 ⊢ (1 · 1) = 1 | |
27 | 25, 26 | eqtri 2821 | . . . . 5 ⊢ ((!‘0) · (0 + 1)) = 1 |
28 | 23, 27 | syl6eq 2849 | . . . 4 ⊢ (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = 1) |
29 | 19, 20, 28 | 3eqtr4a 2859 | . . 3 ⊢ (𝑁 = 0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
30 | 15, 29 | jaoi 884 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
31 | 1, 30 | sylbi 209 | 1 ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 874 = wceq 1653 ∈ wcel 2157 Vcvv 3385 I cid 5219 ‘cfv 6101 (class class class)co 6878 0cc0 10224 1c1 10225 + caddc 10227 · cmul 10229 ℕcn 11312 ℕ0cn0 11580 ℤ≥cuz 11930 seqcseq 13055 !cfa 13313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-n0 11581 df-z 11667 df-uz 11931 df-seq 13056 df-fac 13314 |
This theorem is referenced by: fac2 13319 fac3 13320 fac4 13321 facnn2 13322 faccl 13323 facdiv 13327 facwordi 13329 faclbnd 13330 faclbnd6 13339 facubnd 13340 bcm1k 13355 bcp1n 13356 4bc2eq6 13369 efcllem 15144 ef01bndlem 15250 eirrlem 15268 dvdsfac 15387 prmfac1 15764 pcfac 15936 2expltfac 16127 aaliou3lem2 24439 aaliou3lem8 24441 dvtaylp 24465 advlogexp 24742 facgam 25144 bcmono 25354 ex-fac 27836 subfacval2 31686 subfaclim 31687 faclim 32146 faclim2 32148 bccp1k 39322 binomcxplemwb 39329 wallispi2lem2 41032 stirlinglem4 41037 etransclem24 41218 etransclem28 41222 etransclem38 41232 |
Copyright terms: Public domain | W3C validator |