| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > facp1 | Structured version Visualization version GIF version | ||
| Description: The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| Ref | Expression |
|---|---|
| facp1 | ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12528 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | peano2nn 12278 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ) | |
| 3 | facnn 14314 | . . . . 5 ⊢ ((𝑁 + 1) ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1))) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1))) |
| 5 | ovex 7464 | . . . . . . 7 ⊢ (𝑁 + 1) ∈ V | |
| 6 | fvi 6985 | . . . . . . 7 ⊢ ((𝑁 + 1) ∈ V → ( I ‘(𝑁 + 1)) = (𝑁 + 1)) | |
| 7 | 5, 6 | ax-mp 5 | . . . . . 6 ⊢ ( I ‘(𝑁 + 1)) = (𝑁 + 1) |
| 8 | 7 | oveq2i 7442 | . . . . 5 ⊢ ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))) = ((seq1( · , I )‘𝑁) · (𝑁 + 1)) |
| 9 | seqp1 14057 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘1) → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1)))) | |
| 10 | nnuz 12921 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
| 11 | 9, 10 | eleq2s 2859 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1)))) |
| 12 | facnn 14314 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁)) | |
| 13 | 12 | oveq1d 7446 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((!‘𝑁) · (𝑁 + 1)) = ((seq1( · , I )‘𝑁) · (𝑁 + 1))) |
| 14 | 8, 11, 13 | 3eqtr4a 2803 | . . . 4 ⊢ (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| 15 | 4, 14 | eqtrd 2777 | . . 3 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| 16 | 0p1e1 12388 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 17 | 16 | fveq2i 6909 | . . . . 5 ⊢ (!‘(0 + 1)) = (!‘1) |
| 18 | fac1 14316 | . . . . 5 ⊢ (!‘1) = 1 | |
| 19 | 17, 18 | eqtri 2765 | . . . 4 ⊢ (!‘(0 + 1)) = 1 |
| 20 | fvoveq1 7454 | . . . 4 ⊢ (𝑁 = 0 → (!‘(𝑁 + 1)) = (!‘(0 + 1))) | |
| 21 | fveq2 6906 | . . . . . 6 ⊢ (𝑁 = 0 → (!‘𝑁) = (!‘0)) | |
| 22 | oveq1 7438 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 + 1) = (0 + 1)) | |
| 23 | 21, 22 | oveq12d 7449 | . . . . 5 ⊢ (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = ((!‘0) · (0 + 1))) |
| 24 | fac0 14315 | . . . . . . 7 ⊢ (!‘0) = 1 | |
| 25 | 24, 16 | oveq12i 7443 | . . . . . 6 ⊢ ((!‘0) · (0 + 1)) = (1 · 1) |
| 26 | 1t1e1 12428 | . . . . . 6 ⊢ (1 · 1) = 1 | |
| 27 | 25, 26 | eqtri 2765 | . . . . 5 ⊢ ((!‘0) · (0 + 1)) = 1 |
| 28 | 23, 27 | eqtrdi 2793 | . . . 4 ⊢ (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = 1) |
| 29 | 19, 20, 28 | 3eqtr4a 2803 | . . 3 ⊢ (𝑁 = 0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| 30 | 15, 29 | jaoi 858 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| 31 | 1, 30 | sylbi 217 | 1 ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 848 = wceq 1540 ∈ wcel 2108 Vcvv 3480 I cid 5577 ‘cfv 6561 (class class class)co 7431 0cc0 11155 1c1 11156 + caddc 11158 · cmul 11160 ℕcn 12266 ℕ0cn0 12526 ℤ≥cuz 12878 seqcseq 14042 !cfa 14312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-seq 14043 df-fac 14313 |
| This theorem is referenced by: fac2 14318 fac3 14319 fac4 14320 facnn2 14321 faccl 14322 facdiv 14326 facwordi 14328 faclbnd 14329 faclbnd6 14338 facubnd 14339 bcm1k 14354 bcp1n 14355 4bc2eq6 14368 efcllem 16113 ef01bndlem 16220 eirrlem 16240 dvdsfac 16363 prmfac1 16757 pcfac 16937 2expltfac 17130 aaliou3lem2 26385 aaliou3lem8 26387 dvtaylp 26412 advlogexp 26697 facgam 27109 bcmono 27321 ex-fac 30470 subfacval2 35192 subfaclim 35193 faclim 35746 faclim2 35748 lcmineqlem18 42047 facp2 42144 fac2xp3 42240 factwoffsmonot 42243 bccp1k 44360 binomcxplemwb 44367 wallispi2lem2 46087 stirlinglem4 46092 etransclem24 46273 etransclem28 46277 etransclem38 46287 |
| Copyright terms: Public domain | W3C validator |