| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > facp1 | Structured version Visualization version GIF version | ||
| Description: The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| Ref | Expression |
|---|---|
| facp1 | ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12503 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | peano2nn 12252 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ) | |
| 3 | facnn 14293 | . . . . 5 ⊢ ((𝑁 + 1) ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1))) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1))) |
| 5 | ovex 7438 | . . . . . . 7 ⊢ (𝑁 + 1) ∈ V | |
| 6 | fvi 6955 | . . . . . . 7 ⊢ ((𝑁 + 1) ∈ V → ( I ‘(𝑁 + 1)) = (𝑁 + 1)) | |
| 7 | 5, 6 | ax-mp 5 | . . . . . 6 ⊢ ( I ‘(𝑁 + 1)) = (𝑁 + 1) |
| 8 | 7 | oveq2i 7416 | . . . . 5 ⊢ ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))) = ((seq1( · , I )‘𝑁) · (𝑁 + 1)) |
| 9 | seqp1 14034 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘1) → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1)))) | |
| 10 | nnuz 12895 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
| 11 | 9, 10 | eleq2s 2852 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1)))) |
| 12 | facnn 14293 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁)) | |
| 13 | 12 | oveq1d 7420 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((!‘𝑁) · (𝑁 + 1)) = ((seq1( · , I )‘𝑁) · (𝑁 + 1))) |
| 14 | 8, 11, 13 | 3eqtr4a 2796 | . . . 4 ⊢ (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| 15 | 4, 14 | eqtrd 2770 | . . 3 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| 16 | 0p1e1 12362 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 17 | 16 | fveq2i 6879 | . . . . 5 ⊢ (!‘(0 + 1)) = (!‘1) |
| 18 | fac1 14295 | . . . . 5 ⊢ (!‘1) = 1 | |
| 19 | 17, 18 | eqtri 2758 | . . . 4 ⊢ (!‘(0 + 1)) = 1 |
| 20 | fvoveq1 7428 | . . . 4 ⊢ (𝑁 = 0 → (!‘(𝑁 + 1)) = (!‘(0 + 1))) | |
| 21 | fveq2 6876 | . . . . . 6 ⊢ (𝑁 = 0 → (!‘𝑁) = (!‘0)) | |
| 22 | oveq1 7412 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 + 1) = (0 + 1)) | |
| 23 | 21, 22 | oveq12d 7423 | . . . . 5 ⊢ (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = ((!‘0) · (0 + 1))) |
| 24 | fac0 14294 | . . . . . . 7 ⊢ (!‘0) = 1 | |
| 25 | 24, 16 | oveq12i 7417 | . . . . . 6 ⊢ ((!‘0) · (0 + 1)) = (1 · 1) |
| 26 | 1t1e1 12402 | . . . . . 6 ⊢ (1 · 1) = 1 | |
| 27 | 25, 26 | eqtri 2758 | . . . . 5 ⊢ ((!‘0) · (0 + 1)) = 1 |
| 28 | 23, 27 | eqtrdi 2786 | . . . 4 ⊢ (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = 1) |
| 29 | 19, 20, 28 | 3eqtr4a 2796 | . . 3 ⊢ (𝑁 = 0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| 30 | 15, 29 | jaoi 857 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| 31 | 1, 30 | sylbi 217 | 1 ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2108 Vcvv 3459 I cid 5547 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 + caddc 11132 · cmul 11134 ℕcn 12240 ℕ0cn0 12501 ℤ≥cuz 12852 seqcseq 14019 !cfa 14291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-seq 14020 df-fac 14292 |
| This theorem is referenced by: fac2 14297 fac3 14298 fac4 14299 facnn2 14300 faccl 14301 facdiv 14305 facwordi 14307 faclbnd 14308 faclbnd6 14317 facubnd 14318 bcm1k 14333 bcp1n 14334 4bc2eq6 14347 efcllem 16093 ef01bndlem 16202 eirrlem 16222 dvdsfac 16345 prmfac1 16739 pcfac 16919 2expltfac 17112 aaliou3lem2 26303 aaliou3lem8 26305 dvtaylp 26330 advlogexp 26616 facgam 27028 bcmono 27240 ex-fac 30432 subfacval2 35209 subfaclim 35210 faclim 35763 faclim2 35765 lcmineqlem18 42059 facp2 42156 fac2xp3 42252 factwoffsmonot 42255 bccp1k 44365 binomcxplemwb 44372 wallispi2lem2 46101 stirlinglem4 46106 etransclem24 46287 etransclem28 46291 etransclem38 46301 |
| Copyright terms: Public domain | W3C validator |