MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facp1 Structured version   Visualization version   GIF version

Theorem facp1 14317
Description: The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
facp1 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))

Proof of Theorem facp1
StepHypRef Expression
1 elnn0 12528 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 peano2nn 12278 . . . . 5 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
3 facnn 14314 . . . . 5 ((𝑁 + 1) ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1)))
42, 3syl 17 . . . 4 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1)))
5 ovex 7464 . . . . . . 7 (𝑁 + 1) ∈ V
6 fvi 6985 . . . . . . 7 ((𝑁 + 1) ∈ V → ( I ‘(𝑁 + 1)) = (𝑁 + 1))
75, 6ax-mp 5 . . . . . 6 ( I ‘(𝑁 + 1)) = (𝑁 + 1)
87oveq2i 7442 . . . . 5 ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))) = ((seq1( · , I )‘𝑁) · (𝑁 + 1))
9 seqp1 14057 . . . . . 6 (𝑁 ∈ (ℤ‘1) → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))))
10 nnuz 12921 . . . . . 6 ℕ = (ℤ‘1)
119, 10eleq2s 2859 . . . . 5 (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))))
12 facnn 14314 . . . . . 6 (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))
1312oveq1d 7446 . . . . 5 (𝑁 ∈ ℕ → ((!‘𝑁) · (𝑁 + 1)) = ((seq1( · , I )‘𝑁) · (𝑁 + 1)))
148, 11, 133eqtr4a 2803 . . . 4 (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
154, 14eqtrd 2777 . . 3 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
16 0p1e1 12388 . . . . . 6 (0 + 1) = 1
1716fveq2i 6909 . . . . 5 (!‘(0 + 1)) = (!‘1)
18 fac1 14316 . . . . 5 (!‘1) = 1
1917, 18eqtri 2765 . . . 4 (!‘(0 + 1)) = 1
20 fvoveq1 7454 . . . 4 (𝑁 = 0 → (!‘(𝑁 + 1)) = (!‘(0 + 1)))
21 fveq2 6906 . . . . . 6 (𝑁 = 0 → (!‘𝑁) = (!‘0))
22 oveq1 7438 . . . . . 6 (𝑁 = 0 → (𝑁 + 1) = (0 + 1))
2321, 22oveq12d 7449 . . . . 5 (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = ((!‘0) · (0 + 1)))
24 fac0 14315 . . . . . . 7 (!‘0) = 1
2524, 16oveq12i 7443 . . . . . 6 ((!‘0) · (0 + 1)) = (1 · 1)
26 1t1e1 12428 . . . . . 6 (1 · 1) = 1
2725, 26eqtri 2765 . . . . 5 ((!‘0) · (0 + 1)) = 1
2823, 27eqtrdi 2793 . . . 4 (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = 1)
2919, 20, 283eqtr4a 2803 . . 3 (𝑁 = 0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
3015, 29jaoi 858 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
311, 30sylbi 217 1 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 848   = wceq 1540  wcel 2108  Vcvv 3480   I cid 5577  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cn 12266  0cn0 12526  cuz 12878  seqcseq 14042  !cfa 14312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-fac 14313
This theorem is referenced by:  fac2  14318  fac3  14319  fac4  14320  facnn2  14321  faccl  14322  facdiv  14326  facwordi  14328  faclbnd  14329  faclbnd6  14338  facubnd  14339  bcm1k  14354  bcp1n  14355  4bc2eq6  14368  efcllem  16113  ef01bndlem  16220  eirrlem  16240  dvdsfac  16363  prmfac1  16757  pcfac  16937  2expltfac  17130  aaliou3lem2  26385  aaliou3lem8  26387  dvtaylp  26412  advlogexp  26697  facgam  27109  bcmono  27321  ex-fac  30470  subfacval2  35192  subfaclim  35193  faclim  35746  faclim2  35748  lcmineqlem18  42047  facp2  42144  fac2xp3  42240  factwoffsmonot  42243  bccp1k  44360  binomcxplemwb  44367  wallispi2lem2  46087  stirlinglem4  46092  etransclem24  46273  etransclem28  46277  etransclem38  46287
  Copyright terms: Public domain W3C validator