![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > facp1 | Structured version Visualization version GIF version |
Description: The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
Ref | Expression |
---|---|
facp1 | ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12555 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | peano2nn 12305 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ) | |
3 | facnn 14324 | . . . . 5 ⊢ ((𝑁 + 1) ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1))) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1))) |
5 | ovex 7481 | . . . . . . 7 ⊢ (𝑁 + 1) ∈ V | |
6 | fvi 6998 | . . . . . . 7 ⊢ ((𝑁 + 1) ∈ V → ( I ‘(𝑁 + 1)) = (𝑁 + 1)) | |
7 | 5, 6 | ax-mp 5 | . . . . . 6 ⊢ ( I ‘(𝑁 + 1)) = (𝑁 + 1) |
8 | 7 | oveq2i 7459 | . . . . 5 ⊢ ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))) = ((seq1( · , I )‘𝑁) · (𝑁 + 1)) |
9 | seqp1 14067 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘1) → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1)))) | |
10 | nnuz 12946 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
11 | 9, 10 | eleq2s 2862 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1)))) |
12 | facnn 14324 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁)) | |
13 | 12 | oveq1d 7463 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((!‘𝑁) · (𝑁 + 1)) = ((seq1( · , I )‘𝑁) · (𝑁 + 1))) |
14 | 8, 11, 13 | 3eqtr4a 2806 | . . . 4 ⊢ (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
15 | 4, 14 | eqtrd 2780 | . . 3 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
16 | 0p1e1 12415 | . . . . . 6 ⊢ (0 + 1) = 1 | |
17 | 16 | fveq2i 6923 | . . . . 5 ⊢ (!‘(0 + 1)) = (!‘1) |
18 | fac1 14326 | . . . . 5 ⊢ (!‘1) = 1 | |
19 | 17, 18 | eqtri 2768 | . . . 4 ⊢ (!‘(0 + 1)) = 1 |
20 | fvoveq1 7471 | . . . 4 ⊢ (𝑁 = 0 → (!‘(𝑁 + 1)) = (!‘(0 + 1))) | |
21 | fveq2 6920 | . . . . . 6 ⊢ (𝑁 = 0 → (!‘𝑁) = (!‘0)) | |
22 | oveq1 7455 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 + 1) = (0 + 1)) | |
23 | 21, 22 | oveq12d 7466 | . . . . 5 ⊢ (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = ((!‘0) · (0 + 1))) |
24 | fac0 14325 | . . . . . . 7 ⊢ (!‘0) = 1 | |
25 | 24, 16 | oveq12i 7460 | . . . . . 6 ⊢ ((!‘0) · (0 + 1)) = (1 · 1) |
26 | 1t1e1 12455 | . . . . . 6 ⊢ (1 · 1) = 1 | |
27 | 25, 26 | eqtri 2768 | . . . . 5 ⊢ ((!‘0) · (0 + 1)) = 1 |
28 | 23, 27 | eqtrdi 2796 | . . . 4 ⊢ (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = 1) |
29 | 19, 20, 28 | 3eqtr4a 2806 | . . 3 ⊢ (𝑁 = 0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
30 | 15, 29 | jaoi 856 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
31 | 1, 30 | sylbi 217 | 1 ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 = wceq 1537 ∈ wcel 2108 Vcvv 3488 I cid 5592 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 ℕcn 12293 ℕ0cn0 12553 ℤ≥cuz 12903 seqcseq 14052 !cfa 14322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-seq 14053 df-fac 14323 |
This theorem is referenced by: fac2 14328 fac3 14329 fac4 14330 facnn2 14331 faccl 14332 facdiv 14336 facwordi 14338 faclbnd 14339 faclbnd6 14348 facubnd 14349 bcm1k 14364 bcp1n 14365 4bc2eq6 14378 efcllem 16125 ef01bndlem 16232 eirrlem 16252 dvdsfac 16374 prmfac1 16767 pcfac 16946 2expltfac 17140 aaliou3lem2 26403 aaliou3lem8 26405 dvtaylp 26430 advlogexp 26715 facgam 27127 bcmono 27339 ex-fac 30483 subfacval2 35155 subfaclim 35156 faclim 35708 faclim2 35710 lcmineqlem18 42003 facp2 42100 fac2xp3 42196 factwoffsmonot 42199 bccp1k 44310 binomcxplemwb 44317 wallispi2lem2 45993 stirlinglem4 45998 etransclem24 46179 etransclem28 46183 etransclem38 46193 |
Copyright terms: Public domain | W3C validator |