MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fac1 Structured version   Visualization version   GIF version

Theorem fac1 14260
Description: The factorial of 1. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
fac1 (!‘1) = 1

Proof of Theorem fac1
StepHypRef Expression
1 1nn 12245 . . 3 1 ∈ ℕ
2 facnn 14258 . . 3 (1 ∈ ℕ → (!‘1) = (seq1( · , I )‘1))
31, 2ax-mp 5 . 2 (!‘1) = (seq1( · , I )‘1)
4 1z 12614 . . 3 1 ∈ ℤ
5 seq1 14003 . . 3 (1 ∈ ℤ → (seq1( · , I )‘1) = ( I ‘1))
64, 5ax-mp 5 . 2 (seq1( · , I )‘1) = ( I ‘1)
7 fvi 6968 . . 3 (1 ∈ ℕ → ( I ‘1) = 1)
81, 7ax-mp 5 . 2 ( I ‘1) = 1
93, 6, 83eqtri 2759 1 (!‘1) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099   I cid 5569  cfv 6542  1c1 11131   · cmul 11135  cn 12234  cz 12580  seqcseq 13990  !cfa 14256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-n0 12495  df-z 12581  df-uz 12845  df-seq 13991  df-fac 14257
This theorem is referenced by:  facp1  14261  fac2  14262  faclbnd4lem1  14276  bcn1  14296  ege2le3  16058  ef4p  16081  efgt1p2  16082  efgt1p  16083  symg1hash  19335  dveflem  25898  logfacrlim2  27146  subfacval2  34733  subfacval3  34735  wallispi2lem2  45383
  Copyright terms: Public domain W3C validator