MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqfeq4 Structured version   Visualization version   GIF version

Theorem seqfeq4 14069
Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
seqfeq4.m (𝜑𝑁 ∈ (ℤ𝑀))
seqfeq4.f ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
seqfeq4.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqfeq4.id ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
Assertion
Ref Expression
seqfeq4 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁))
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑄,𝑦   𝑥,𝑆,𝑦

Proof of Theorem seqfeq4
StepHypRef Expression
1 fvex 6889 . . 3 (seq𝑀( + , 𝐹)‘𝑁) ∈ V
2 fvi 6955 . . 3 ((seq𝑀( + , 𝐹)‘𝑁) ∈ V → ( I ‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁))
31, 2ax-mp 5 . 2 ( I ‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁)
4 seqfeq4.cl . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
5 seqfeq4.f . . 3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
6 seqfeq4.m . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
7 seqfeq4.id . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
8 ovex 7438 . . . . 5 (𝑥 + 𝑦) ∈ V
9 fvi 6955 . . . . 5 ((𝑥 + 𝑦) ∈ V → ( I ‘(𝑥 + 𝑦)) = (𝑥 + 𝑦))
108, 9ax-mp 5 . . . 4 ( I ‘(𝑥 + 𝑦)) = (𝑥 + 𝑦)
11 fvi 6955 . . . . . 6 (𝑥 ∈ V → ( I ‘𝑥) = 𝑥)
1211elv 3464 . . . . 5 ( I ‘𝑥) = 𝑥
13 fvi 6955 . . . . . 6 (𝑦 ∈ V → ( I ‘𝑦) = 𝑦)
1413elv 3464 . . . . 5 ( I ‘𝑦) = 𝑦
1512, 14oveq12i 7417 . . . 4 (( I ‘𝑥)𝑄( I ‘𝑦)) = (𝑥𝑄𝑦)
167, 10, 153eqtr4g 2795 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ( I ‘(𝑥 + 𝑦)) = (( I ‘𝑥)𝑄( I ‘𝑦)))
17 fvex 6889 . . . 4 (𝐹𝑥) ∈ V
18 fvi 6955 . . . 4 ((𝐹𝑥) ∈ V → ( I ‘(𝐹𝑥)) = (𝐹𝑥))
1917, 18mp1i 13 . . 3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ( I ‘(𝐹𝑥)) = (𝐹𝑥))
204, 5, 6, 16, 19seqhomo 14067 . 2 (𝜑 → ( I ‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐹)‘𝑁))
213, 20eqtr3id 2784 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459   I cid 5547  cfv 6531  (class class class)co 7405  cuz 12852  ...cfz 13524  seqcseq 14019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-seq 14020
This theorem is referenced by:  seqfeq3  14070  gsumpropd2lem  18657  gsumzoppg  19925
  Copyright terms: Public domain W3C validator