Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > seqfeq4 | Structured version Visualization version GIF version |
Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
seqfeq4.m | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
seqfeq4.f | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) |
seqfeq4.cl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
seqfeq4.id | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦)) |
Ref | Expression |
---|---|
seqfeq4 | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6749 | . . 3 ⊢ (seq𝑀( + , 𝐹)‘𝑁) ∈ V | |
2 | fvi 6806 | . . 3 ⊢ ((seq𝑀( + , 𝐹)‘𝑁) ∈ V → ( I ‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ( I ‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁) |
4 | seqfeq4.cl | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
5 | seqfeq4.f | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) | |
6 | seqfeq4.m | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
7 | seqfeq4.id | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦)) | |
8 | ovex 7265 | . . . . 5 ⊢ (𝑥 + 𝑦) ∈ V | |
9 | fvi 6806 | . . . . 5 ⊢ ((𝑥 + 𝑦) ∈ V → ( I ‘(𝑥 + 𝑦)) = (𝑥 + 𝑦)) | |
10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ ( I ‘(𝑥 + 𝑦)) = (𝑥 + 𝑦) |
11 | fvi 6806 | . . . . . 6 ⊢ (𝑥 ∈ V → ( I ‘𝑥) = 𝑥) | |
12 | 11 | elv 3427 | . . . . 5 ⊢ ( I ‘𝑥) = 𝑥 |
13 | fvi 6806 | . . . . . 6 ⊢ (𝑦 ∈ V → ( I ‘𝑦) = 𝑦) | |
14 | 13 | elv 3427 | . . . . 5 ⊢ ( I ‘𝑦) = 𝑦 |
15 | 12, 14 | oveq12i 7244 | . . . 4 ⊢ (( I ‘𝑥)𝑄( I ‘𝑦)) = (𝑥𝑄𝑦) |
16 | 7, 10, 15 | 3eqtr4g 2804 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ( I ‘(𝑥 + 𝑦)) = (( I ‘𝑥)𝑄( I ‘𝑦))) |
17 | fvex 6749 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
18 | fvi 6806 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ V → ( I ‘(𝐹‘𝑥)) = (𝐹‘𝑥)) | |
19 | 17, 18 | mp1i 13 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → ( I ‘(𝐹‘𝑥)) = (𝐹‘𝑥)) |
20 | 4, 5, 6, 16, 19 | seqhomo 13650 | . 2 ⊢ (𝜑 → ( I ‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐹)‘𝑁)) |
21 | 3, 20 | eqtr3id 2793 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2111 Vcvv 3421 I cid 5469 ‘cfv 6398 (class class class)co 7232 ℤ≥cuz 12463 ...cfz 13120 seqcseq 13601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-iun 4921 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-om 7664 df-1st 7780 df-2nd 7781 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-er 8412 df-en 8648 df-dom 8649 df-sdom 8650 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-nn 11856 df-n0 12116 df-z 12202 df-uz 12464 df-fz 13121 df-seq 13602 |
This theorem is referenced by: seqfeq3 13653 gsumpropd2lem 18179 gsumzoppg 19357 |
Copyright terms: Public domain | W3C validator |