| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > normsubi | Structured version Visualization version GIF version | ||
| Description: Negative doesn't change the norm of a Hilbert space vector. (Contributed by NM, 11-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| normsub.1 | ⊢ 𝐴 ∈ ℋ |
| normsub.2 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| normsubi | ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) = (normℎ‘(𝐵 −ℎ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1cn 12132 | . . 3 ⊢ -1 ∈ ℂ | |
| 2 | normsub.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
| 3 | normsub.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
| 4 | 2, 3 | hvsubcli 30984 | . . 3 ⊢ (𝐵 −ℎ 𝐴) ∈ ℋ |
| 5 | 1, 4 | norm-iii-i 31102 | . 2 ⊢ (normℎ‘(-1 ·ℎ (𝐵 −ℎ 𝐴))) = ((abs‘-1) · (normℎ‘(𝐵 −ℎ 𝐴))) |
| 6 | 2, 3 | hvnegdii 31025 | . . 3 ⊢ (-1 ·ℎ (𝐵 −ℎ 𝐴)) = (𝐴 −ℎ 𝐵) |
| 7 | 6 | fveq2i 6829 | . 2 ⊢ (normℎ‘(-1 ·ℎ (𝐵 −ℎ 𝐴))) = (normℎ‘(𝐴 −ℎ 𝐵)) |
| 8 | ax-1cn 11086 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 9 | 8 | absnegi 15327 | . . . . 5 ⊢ (abs‘-1) = (abs‘1) |
| 10 | abs1 15223 | . . . . 5 ⊢ (abs‘1) = 1 | |
| 11 | 9, 10 | eqtri 2752 | . . . 4 ⊢ (abs‘-1) = 1 |
| 12 | 11 | oveq1i 7363 | . . 3 ⊢ ((abs‘-1) · (normℎ‘(𝐵 −ℎ 𝐴))) = (1 · (normℎ‘(𝐵 −ℎ 𝐴))) |
| 13 | 4 | normcli 31094 | . . . . 5 ⊢ (normℎ‘(𝐵 −ℎ 𝐴)) ∈ ℝ |
| 14 | 13 | recni 11148 | . . . 4 ⊢ (normℎ‘(𝐵 −ℎ 𝐴)) ∈ ℂ |
| 15 | 14 | mullidi 11139 | . . 3 ⊢ (1 · (normℎ‘(𝐵 −ℎ 𝐴))) = (normℎ‘(𝐵 −ℎ 𝐴)) |
| 16 | 12, 15 | eqtri 2752 | . 2 ⊢ ((abs‘-1) · (normℎ‘(𝐵 −ℎ 𝐴))) = (normℎ‘(𝐵 −ℎ 𝐴)) |
| 17 | 5, 7, 16 | 3eqtr3i 2760 | 1 ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) = (normℎ‘(𝐵 −ℎ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 1c1 11029 · cmul 11033 -cneg 11367 abscabs 15160 ℋchba 30882 ·ℎ csm 30884 normℎcno 30886 −ℎ cmv 30888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-hfvadd 30963 ax-hvcom 30964 ax-hv0cl 30966 ax-hfvmul 30968 ax-hvmulid 30969 ax-hvmulass 30970 ax-hvdistr1 30971 ax-hvmul0 30973 ax-hfi 31042 ax-his1 31045 ax-his3 31047 ax-his4 31048 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-n0 12404 df-z 12491 df-uz 12755 df-rp 12913 df-seq 13928 df-exp 13988 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-hnorm 30931 df-hvsub 30934 |
| This theorem is referenced by: normsub 31106 norm3adifii 31111 |
| Copyright terms: Public domain | W3C validator |