![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > normsubi | Structured version Visualization version GIF version |
Description: Negative doesn't change the norm of a Hilbert space vector. (Contributed by NM, 11-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normsub.1 | โข ๐ด โ โ |
normsub.2 | โข ๐ต โ โ |
Ref | Expression |
---|---|
normsubi | โข (normโโ(๐ด โโ ๐ต)) = (normโโ(๐ต โโ ๐ด)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 12364 | . . 3 โข -1 โ โ | |
2 | normsub.2 | . . . 4 โข ๐ต โ โ | |
3 | normsub.1 | . . . 4 โข ๐ด โ โ | |
4 | 2, 3 | hvsubcli 30851 | . . 3 โข (๐ต โโ ๐ด) โ โ |
5 | 1, 4 | norm-iii-i 30969 | . 2 โข (normโโ(-1 ยทโ (๐ต โโ ๐ด))) = ((absโ-1) ยท (normโโ(๐ต โโ ๐ด))) |
6 | 2, 3 | hvnegdii 30892 | . . 3 โข (-1 ยทโ (๐ต โโ ๐ด)) = (๐ด โโ ๐ต) |
7 | 6 | fveq2i 6905 | . 2 โข (normโโ(-1 ยทโ (๐ต โโ ๐ด))) = (normโโ(๐ด โโ ๐ต)) |
8 | ax-1cn 11204 | . . . . . 6 โข 1 โ โ | |
9 | 8 | absnegi 15387 | . . . . 5 โข (absโ-1) = (absโ1) |
10 | abs1 15284 | . . . . 5 โข (absโ1) = 1 | |
11 | 9, 10 | eqtri 2756 | . . . 4 โข (absโ-1) = 1 |
12 | 11 | oveq1i 7436 | . . 3 โข ((absโ-1) ยท (normโโ(๐ต โโ ๐ด))) = (1 ยท (normโโ(๐ต โโ ๐ด))) |
13 | 4 | normcli 30961 | . . . . 5 โข (normโโ(๐ต โโ ๐ด)) โ โ |
14 | 13 | recni 11266 | . . . 4 โข (normโโ(๐ต โโ ๐ด)) โ โ |
15 | 14 | mullidi 11257 | . . 3 โข (1 ยท (normโโ(๐ต โโ ๐ด))) = (normโโ(๐ต โโ ๐ด)) |
16 | 12, 15 | eqtri 2756 | . 2 โข ((absโ-1) ยท (normโโ(๐ต โโ ๐ด))) = (normโโ(๐ต โโ ๐ด)) |
17 | 5, 7, 16 | 3eqtr3i 2764 | 1 โข (normโโ(๐ด โโ ๐ต)) = (normโโ(๐ต โโ ๐ด)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 โ wcel 2098 โcfv 6553 (class class class)co 7426 1c1 11147 ยท cmul 11151 -cneg 11483 abscabs 15221 โchba 30749 ยทโ csm 30751 normโcno 30753 โโ cmv 30755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 ax-hfvadd 30830 ax-hvcom 30831 ax-hv0cl 30833 ax-hfvmul 30835 ax-hvmulid 30836 ax-hvmulass 30837 ax-hvdistr1 30838 ax-hvmul0 30840 ax-hfi 30909 ax-his1 30912 ax-his3 30914 ax-his4 30915 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-sup 9473 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-z 12597 df-uz 12861 df-rp 13015 df-seq 14007 df-exp 14067 df-cj 15086 df-re 15087 df-im 15088 df-sqrt 15222 df-abs 15223 df-hnorm 30798 df-hvsub 30801 |
This theorem is referenced by: normsub 30973 norm3adifii 30978 |
Copyright terms: Public domain | W3C validator |