| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > normsubi | Structured version Visualization version GIF version | ||
| Description: Negative doesn't change the norm of a Hilbert space vector. (Contributed by NM, 11-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| normsub.1 | ⊢ 𝐴 ∈ ℋ |
| normsub.2 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| normsubi | ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) = (normℎ‘(𝐵 −ℎ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1cn 12105 | . . 3 ⊢ -1 ∈ ℂ | |
| 2 | normsub.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
| 3 | normsub.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
| 4 | 2, 3 | hvsubcli 30993 | . . 3 ⊢ (𝐵 −ℎ 𝐴) ∈ ℋ |
| 5 | 1, 4 | norm-iii-i 31111 | . 2 ⊢ (normℎ‘(-1 ·ℎ (𝐵 −ℎ 𝐴))) = ((abs‘-1) · (normℎ‘(𝐵 −ℎ 𝐴))) |
| 6 | 2, 3 | hvnegdii 31034 | . . 3 ⊢ (-1 ·ℎ (𝐵 −ℎ 𝐴)) = (𝐴 −ℎ 𝐵) |
| 7 | 6 | fveq2i 6820 | . 2 ⊢ (normℎ‘(-1 ·ℎ (𝐵 −ℎ 𝐴))) = (normℎ‘(𝐴 −ℎ 𝐵)) |
| 8 | ax-1cn 11059 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 9 | 8 | absnegi 15303 | . . . . 5 ⊢ (abs‘-1) = (abs‘1) |
| 10 | abs1 15199 | . . . . 5 ⊢ (abs‘1) = 1 | |
| 11 | 9, 10 | eqtri 2754 | . . . 4 ⊢ (abs‘-1) = 1 |
| 12 | 11 | oveq1i 7351 | . . 3 ⊢ ((abs‘-1) · (normℎ‘(𝐵 −ℎ 𝐴))) = (1 · (normℎ‘(𝐵 −ℎ 𝐴))) |
| 13 | 4 | normcli 31103 | . . . . 5 ⊢ (normℎ‘(𝐵 −ℎ 𝐴)) ∈ ℝ |
| 14 | 13 | recni 11121 | . . . 4 ⊢ (normℎ‘(𝐵 −ℎ 𝐴)) ∈ ℂ |
| 15 | 14 | mullidi 11112 | . . 3 ⊢ (1 · (normℎ‘(𝐵 −ℎ 𝐴))) = (normℎ‘(𝐵 −ℎ 𝐴)) |
| 16 | 12, 15 | eqtri 2754 | . 2 ⊢ ((abs‘-1) · (normℎ‘(𝐵 −ℎ 𝐴))) = (normℎ‘(𝐵 −ℎ 𝐴)) |
| 17 | 5, 7, 16 | 3eqtr3i 2762 | 1 ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) = (normℎ‘(𝐵 −ℎ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 1c1 11002 · cmul 11006 -cneg 11340 abscabs 15136 ℋchba 30891 ·ℎ csm 30893 normℎcno 30895 −ℎ cmv 30897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-hfvadd 30972 ax-hvcom 30973 ax-hv0cl 30975 ax-hfvmul 30977 ax-hvmulid 30978 ax-hvmulass 30979 ax-hvdistr1 30980 ax-hvmul0 30982 ax-hfi 31051 ax-his1 31054 ax-his3 31056 ax-his4 31057 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-hnorm 30940 df-hvsub 30943 |
| This theorem is referenced by: normsub 31115 norm3adifii 31120 |
| Copyright terms: Public domain | W3C validator |