![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > normsubi | Structured version Visualization version GIF version |
Description: Negative doesn't change the norm of a Hilbert space vector. (Contributed by NM, 11-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normsub.1 | โข ๐ด โ โ |
normsub.2 | โข ๐ต โ โ |
Ref | Expression |
---|---|
normsubi | โข (normโโ(๐ด โโ ๐ต)) = (normโโ(๐ต โโ ๐ด)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 12327 | . . 3 โข -1 โ โ | |
2 | normsub.2 | . . . 4 โข ๐ต โ โ | |
3 | normsub.1 | . . . 4 โข ๐ด โ โ | |
4 | 2, 3 | hvsubcli 30778 | . . 3 โข (๐ต โโ ๐ด) โ โ |
5 | 1, 4 | norm-iii-i 30896 | . 2 โข (normโโ(-1 ยทโ (๐ต โโ ๐ด))) = ((absโ-1) ยท (normโโ(๐ต โโ ๐ด))) |
6 | 2, 3 | hvnegdii 30819 | . . 3 โข (-1 ยทโ (๐ต โโ ๐ด)) = (๐ด โโ ๐ต) |
7 | 6 | fveq2i 6887 | . 2 โข (normโโ(-1 ยทโ (๐ต โโ ๐ด))) = (normโโ(๐ด โโ ๐ต)) |
8 | ax-1cn 11167 | . . . . . 6 โข 1 โ โ | |
9 | 8 | absnegi 15350 | . . . . 5 โข (absโ-1) = (absโ1) |
10 | abs1 15247 | . . . . 5 โข (absโ1) = 1 | |
11 | 9, 10 | eqtri 2754 | . . . 4 โข (absโ-1) = 1 |
12 | 11 | oveq1i 7414 | . . 3 โข ((absโ-1) ยท (normโโ(๐ต โโ ๐ด))) = (1 ยท (normโโ(๐ต โโ ๐ด))) |
13 | 4 | normcli 30888 | . . . . 5 โข (normโโ(๐ต โโ ๐ด)) โ โ |
14 | 13 | recni 11229 | . . . 4 โข (normโโ(๐ต โโ ๐ด)) โ โ |
15 | 14 | mullidi 11220 | . . 3 โข (1 ยท (normโโ(๐ต โโ ๐ด))) = (normโโ(๐ต โโ ๐ด)) |
16 | 12, 15 | eqtri 2754 | . 2 โข ((absโ-1) ยท (normโโ(๐ต โโ ๐ด))) = (normโโ(๐ต โโ ๐ด)) |
17 | 5, 7, 16 | 3eqtr3i 2762 | 1 โข (normโโ(๐ด โโ ๐ต)) = (normโโ(๐ต โโ ๐ด)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 โ wcel 2098 โcfv 6536 (class class class)co 7404 1c1 11110 ยท cmul 11114 -cneg 11446 abscabs 15184 โchba 30676 ยทโ csm 30678 normโcno 30680 โโ cmv 30682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-hfvadd 30757 ax-hvcom 30758 ax-hv0cl 30760 ax-hfvmul 30762 ax-hvmulid 30763 ax-hvmulass 30764 ax-hvdistr1 30765 ax-hvmul0 30767 ax-hfi 30836 ax-his1 30839 ax-his3 30841 ax-his4 30842 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-n0 12474 df-z 12560 df-uz 12824 df-rp 12978 df-seq 13970 df-exp 14030 df-cj 15049 df-re 15050 df-im 15051 df-sqrt 15185 df-abs 15186 df-hnorm 30725 df-hvsub 30728 |
This theorem is referenced by: normsub 30900 norm3adifii 30905 |
Copyright terms: Public domain | W3C validator |