![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > normsubi | Structured version Visualization version GIF version |
Description: Negative doesn't change the norm of a Hilbert space vector. (Contributed by NM, 11-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normsub.1 | ⊢ 𝐴 ∈ ℋ |
normsub.2 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
normsubi | ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) = (normℎ‘(𝐵 −ℎ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 11430 | . . 3 ⊢ -1 ∈ ℂ | |
2 | normsub.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
3 | normsub.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
4 | 2, 3 | hvsubcli 28395 | . . 3 ⊢ (𝐵 −ℎ 𝐴) ∈ ℋ |
5 | 1, 4 | norm-iii-i 28513 | . 2 ⊢ (normℎ‘(-1 ·ℎ (𝐵 −ℎ 𝐴))) = ((abs‘-1) · (normℎ‘(𝐵 −ℎ 𝐴))) |
6 | 2, 3 | hvnegdii 28436 | . . 3 ⊢ (-1 ·ℎ (𝐵 −ℎ 𝐴)) = (𝐴 −ℎ 𝐵) |
7 | 6 | fveq2i 6412 | . 2 ⊢ (normℎ‘(-1 ·ℎ (𝐵 −ℎ 𝐴))) = (normℎ‘(𝐴 −ℎ 𝐵)) |
8 | ax-1cn 10280 | . . . . . 6 ⊢ 1 ∈ ℂ | |
9 | 8 | absnegi 14477 | . . . . 5 ⊢ (abs‘-1) = (abs‘1) |
10 | abs1 14375 | . . . . 5 ⊢ (abs‘1) = 1 | |
11 | 9, 10 | eqtri 2819 | . . . 4 ⊢ (abs‘-1) = 1 |
12 | 11 | oveq1i 6886 | . . 3 ⊢ ((abs‘-1) · (normℎ‘(𝐵 −ℎ 𝐴))) = (1 · (normℎ‘(𝐵 −ℎ 𝐴))) |
13 | 4 | normcli 28505 | . . . . 5 ⊢ (normℎ‘(𝐵 −ℎ 𝐴)) ∈ ℝ |
14 | 13 | recni 10341 | . . . 4 ⊢ (normℎ‘(𝐵 −ℎ 𝐴)) ∈ ℂ |
15 | 14 | mulid2i 10332 | . . 3 ⊢ (1 · (normℎ‘(𝐵 −ℎ 𝐴))) = (normℎ‘(𝐵 −ℎ 𝐴)) |
16 | 12, 15 | eqtri 2819 | . 2 ⊢ ((abs‘-1) · (normℎ‘(𝐵 −ℎ 𝐴))) = (normℎ‘(𝐵 −ℎ 𝐴)) |
17 | 5, 7, 16 | 3eqtr3i 2827 | 1 ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) = (normℎ‘(𝐵 −ℎ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∈ wcel 2157 ‘cfv 6099 (class class class)co 6876 1c1 10223 · cmul 10227 -cneg 10555 abscabs 14312 ℋchba 28293 ·ℎ csm 28295 normℎcno 28297 −ℎ cmv 28299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 ax-pre-sup 10300 ax-hfvadd 28374 ax-hvcom 28375 ax-hv0cl 28377 ax-hfvmul 28379 ax-hvmulid 28380 ax-hvmulass 28381 ax-hvdistr1 28382 ax-hvmul0 28384 ax-hfi 28453 ax-his1 28456 ax-his3 28458 ax-his4 28459 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-sup 8588 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-div 10975 df-nn 11311 df-2 11372 df-3 11373 df-n0 11577 df-z 11663 df-uz 11927 df-rp 12071 df-seq 13052 df-exp 13111 df-cj 14177 df-re 14178 df-im 14179 df-sqrt 14313 df-abs 14314 df-hnorm 28342 df-hvsub 28345 |
This theorem is referenced by: normsub 28517 norm3adifii 28522 |
Copyright terms: Public domain | W3C validator |