MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmdisj2r Structured version   Visualization version   GIF version

Theorem lsmdisj2r 19605
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.)
Hypotheses
Ref Expression
lsmcntz.p = (LSSum‘𝐺)
lsmcntz.s (𝜑𝑆 ∈ (SubGrp‘𝐺))
lsmcntz.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
lsmcntz.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
lsmdisj.o 0 = (0g𝐺)
lsmdisjr.i (𝜑 → (𝑆 ∩ (𝑇 𝑈)) = { 0 })
lsmdisj2r.i (𝜑 → (𝑇𝑈) = { 0 })
Assertion
Ref Expression
lsmdisj2r (𝜑 → ((𝑆 𝑈) ∩ 𝑇) = { 0 })

Proof of Theorem lsmdisj2r
StepHypRef Expression
1 eqid 2726 . . . . 5 (oppg𝐺) = (oppg𝐺)
2 lsmcntz.p . . . . 5 = (LSSum‘𝐺)
31, 2oppglsm 19562 . . . 4 (𝑈(LSSum‘(oppg𝐺))𝑆) = (𝑆 𝑈)
43ineq2i 4204 . . 3 (𝑇 ∩ (𝑈(LSSum‘(oppg𝐺))𝑆)) = (𝑇 ∩ (𝑆 𝑈))
5 incom 4196 . . 3 (𝑇 ∩ (𝑆 𝑈)) = ((𝑆 𝑈) ∩ 𝑇)
64, 5eqtri 2754 . 2 (𝑇 ∩ (𝑈(LSSum‘(oppg𝐺))𝑆)) = ((𝑆 𝑈) ∩ 𝑇)
7 eqid 2726 . . 3 (LSSum‘(oppg𝐺)) = (LSSum‘(oppg𝐺))
8 lsmcntz.u . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝐺))
91oppgsubg 19282 . . . 4 (SubGrp‘𝐺) = (SubGrp‘(oppg𝐺))
108, 9eleqtrdi 2837 . . 3 (𝜑𝑈 ∈ (SubGrp‘(oppg𝐺)))
11 lsmcntz.t . . . 4 (𝜑𝑇 ∈ (SubGrp‘𝐺))
1211, 9eleqtrdi 2837 . . 3 (𝜑𝑇 ∈ (SubGrp‘(oppg𝐺)))
13 lsmcntz.s . . . 4 (𝜑𝑆 ∈ (SubGrp‘𝐺))
1413, 9eleqtrdi 2837 . . 3 (𝜑𝑆 ∈ (SubGrp‘(oppg𝐺)))
15 lsmdisj.o . . . 4 0 = (0g𝐺)
161, 15oppgid 19275 . . 3 0 = (0g‘(oppg𝐺))
171, 2oppglsm 19562 . . . . . 6 (𝑈(LSSum‘(oppg𝐺))𝑇) = (𝑇 𝑈)
1817ineq1i 4203 . . . . 5 ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆) = ((𝑇 𝑈) ∩ 𝑆)
19 incom 4196 . . . . 5 ((𝑇 𝑈) ∩ 𝑆) = (𝑆 ∩ (𝑇 𝑈))
2018, 19eqtri 2754 . . . 4 ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆) = (𝑆 ∩ (𝑇 𝑈))
21 lsmdisjr.i . . . 4 (𝜑 → (𝑆 ∩ (𝑇 𝑈)) = { 0 })
2220, 21eqtrid 2778 . . 3 (𝜑 → ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆) = { 0 })
23 incom 4196 . . . 4 (𝑇𝑈) = (𝑈𝑇)
24 lsmdisj2r.i . . . 4 (𝜑 → (𝑇𝑈) = { 0 })
2523, 24eqtr3id 2780 . . 3 (𝜑 → (𝑈𝑇) = { 0 })
267, 10, 12, 14, 16, 22, 25lsmdisj2 19602 . 2 (𝜑 → (𝑇 ∩ (𝑈(LSSum‘(oppg𝐺))𝑆)) = { 0 })
276, 26eqtr3id 2780 1 (𝜑 → ((𝑆 𝑈) ∩ 𝑇) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cin 3942  {csn 4623  cfv 6537  (class class class)co 7405  0gc0g 17394  SubGrpcsubg 19047  oppgcoppg 19261  LSSumclsm 19554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-tpos 8212  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-plusg 17219  df-0g 17396  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18714  df-grp 18866  df-minusg 18867  df-subg 19050  df-oppg 19262  df-lsm 19556
This theorem is referenced by:  lsmdisj3r  19606  lsmdisj2b  19608
  Copyright terms: Public domain W3C validator