MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmdisj2r Structured version   Visualization version   GIF version

Theorem lsmdisj2r 18922
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.)
Hypotheses
Ref Expression
lsmcntz.p = (LSSum‘𝐺)
lsmcntz.s (𝜑𝑆 ∈ (SubGrp‘𝐺))
lsmcntz.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
lsmcntz.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
lsmdisj.o 0 = (0g𝐺)
lsmdisjr.i (𝜑 → (𝑆 ∩ (𝑇 𝑈)) = { 0 })
lsmdisj2r.i (𝜑 → (𝑇𝑈) = { 0 })
Assertion
Ref Expression
lsmdisj2r (𝜑 → ((𝑆 𝑈) ∩ 𝑇) = { 0 })

Proof of Theorem lsmdisj2r
StepHypRef Expression
1 eqid 2738 . . . . 5 (oppg𝐺) = (oppg𝐺)
2 lsmcntz.p . . . . 5 = (LSSum‘𝐺)
31, 2oppglsm 18878 . . . 4 (𝑈(LSSum‘(oppg𝐺))𝑆) = (𝑆 𝑈)
43ineq2i 4098 . . 3 (𝑇 ∩ (𝑈(LSSum‘(oppg𝐺))𝑆)) = (𝑇 ∩ (𝑆 𝑈))
5 incom 4089 . . 3 (𝑇 ∩ (𝑆 𝑈)) = ((𝑆 𝑈) ∩ 𝑇)
64, 5eqtri 2761 . 2 (𝑇 ∩ (𝑈(LSSum‘(oppg𝐺))𝑆)) = ((𝑆 𝑈) ∩ 𝑇)
7 eqid 2738 . . 3 (LSSum‘(oppg𝐺)) = (LSSum‘(oppg𝐺))
8 lsmcntz.u . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝐺))
91oppgsubg 18602 . . . 4 (SubGrp‘𝐺) = (SubGrp‘(oppg𝐺))
108, 9eleqtrdi 2843 . . 3 (𝜑𝑈 ∈ (SubGrp‘(oppg𝐺)))
11 lsmcntz.t . . . 4 (𝜑𝑇 ∈ (SubGrp‘𝐺))
1211, 9eleqtrdi 2843 . . 3 (𝜑𝑇 ∈ (SubGrp‘(oppg𝐺)))
13 lsmcntz.s . . . 4 (𝜑𝑆 ∈ (SubGrp‘𝐺))
1413, 9eleqtrdi 2843 . . 3 (𝜑𝑆 ∈ (SubGrp‘(oppg𝐺)))
15 lsmdisj.o . . . 4 0 = (0g𝐺)
161, 15oppgid 18595 . . 3 0 = (0g‘(oppg𝐺))
171, 2oppglsm 18878 . . . . . 6 (𝑈(LSSum‘(oppg𝐺))𝑇) = (𝑇 𝑈)
1817ineq1i 4097 . . . . 5 ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆) = ((𝑇 𝑈) ∩ 𝑆)
19 incom 4089 . . . . 5 ((𝑇 𝑈) ∩ 𝑆) = (𝑆 ∩ (𝑇 𝑈))
2018, 19eqtri 2761 . . . 4 ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆) = (𝑆 ∩ (𝑇 𝑈))
21 lsmdisjr.i . . . 4 (𝜑 → (𝑆 ∩ (𝑇 𝑈)) = { 0 })
2220, 21syl5eq 2785 . . 3 (𝜑 → ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆) = { 0 })
23 incom 4089 . . . 4 (𝑇𝑈) = (𝑈𝑇)
24 lsmdisj2r.i . . . 4 (𝜑 → (𝑇𝑈) = { 0 })
2523, 24eqtr3id 2787 . . 3 (𝜑 → (𝑈𝑇) = { 0 })
267, 10, 12, 14, 16, 22, 25lsmdisj2 18919 . 2 (𝜑 → (𝑇 ∩ (𝑈(LSSum‘(oppg𝐺))𝑆)) = { 0 })
276, 26eqtr3id 2787 1 (𝜑 → ((𝑆 𝑈) ∩ 𝑇) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2113  cin 3840  {csn 4513  cfv 6333  (class class class)co 7164  0gc0g 16809  SubGrpcsubg 18384  oppgcoppg 18584  LSSumclsm 18870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-tpos 7914  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-2 11772  df-ndx 16582  df-slot 16583  df-base 16585  df-sets 16586  df-ress 16587  df-plusg 16674  df-0g 16811  df-mgm 17961  df-sgrp 18010  df-mnd 18021  df-submnd 18066  df-grp 18215  df-minusg 18216  df-subg 18387  df-oppg 18585  df-lsm 18872
This theorem is referenced by:  lsmdisj3r  18923  lsmdisj2b  18925
  Copyright terms: Public domain W3C validator