|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > lsmdisj2r | Structured version Visualization version GIF version | ||
| Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.) | 
| Ref | Expression | 
|---|---|
| lsmcntz.p | ⊢ ⊕ = (LSSum‘𝐺) | 
| lsmcntz.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | 
| lsmcntz.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | 
| lsmcntz.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | 
| lsmdisj.o | ⊢ 0 = (0g‘𝐺) | 
| lsmdisjr.i | ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) | 
| lsmdisj2r.i | ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) | 
| Ref | Expression | 
|---|---|
| lsmdisj2r | ⊢ (𝜑 → ((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 }) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2736 | . . . . 5 ⊢ (oppg‘𝐺) = (oppg‘𝐺) | |
| 2 | lsmcntz.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
| 3 | 1, 2 | oppglsm 19661 | . . . 4 ⊢ (𝑈(LSSum‘(oppg‘𝐺))𝑆) = (𝑆 ⊕ 𝑈) | 
| 4 | 3 | ineq2i 4216 | . . 3 ⊢ (𝑇 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑆)) = (𝑇 ∩ (𝑆 ⊕ 𝑈)) | 
| 5 | incom 4208 | . . 3 ⊢ (𝑇 ∩ (𝑆 ⊕ 𝑈)) = ((𝑆 ⊕ 𝑈) ∩ 𝑇) | |
| 6 | 4, 5 | eqtri 2764 | . 2 ⊢ (𝑇 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑆)) = ((𝑆 ⊕ 𝑈) ∩ 𝑇) | 
| 7 | eqid 2736 | . . 3 ⊢ (LSSum‘(oppg‘𝐺)) = (LSSum‘(oppg‘𝐺)) | |
| 8 | lsmcntz.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
| 9 | 1 | oppgsubg 19383 | . . . 4 ⊢ (SubGrp‘𝐺) = (SubGrp‘(oppg‘𝐺)) | 
| 10 | 8, 9 | eleqtrdi 2850 | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘(oppg‘𝐺))) | 
| 11 | lsmcntz.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
| 12 | 11, 9 | eleqtrdi 2850 | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘(oppg‘𝐺))) | 
| 13 | lsmcntz.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 14 | 13, 9 | eleqtrdi 2850 | . . 3 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘(oppg‘𝐺))) | 
| 15 | lsmdisj.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 16 | 1, 15 | oppgid 19376 | . . 3 ⊢ 0 = (0g‘(oppg‘𝐺)) | 
| 17 | 1, 2 | oppglsm 19661 | . . . . . 6 ⊢ (𝑈(LSSum‘(oppg‘𝐺))𝑇) = (𝑇 ⊕ 𝑈) | 
| 18 | 17 | ineq1i 4215 | . . . . 5 ⊢ ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆) = ((𝑇 ⊕ 𝑈) ∩ 𝑆) | 
| 19 | incom 4208 | . . . . 5 ⊢ ((𝑇 ⊕ 𝑈) ∩ 𝑆) = (𝑆 ∩ (𝑇 ⊕ 𝑈)) | |
| 20 | 18, 19 | eqtri 2764 | . . . 4 ⊢ ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆) = (𝑆 ∩ (𝑇 ⊕ 𝑈)) | 
| 21 | lsmdisjr.i | . . . 4 ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) | |
| 22 | 20, 21 | eqtrid 2788 | . . 3 ⊢ (𝜑 → ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆) = { 0 }) | 
| 23 | incom 4208 | . . . 4 ⊢ (𝑇 ∩ 𝑈) = (𝑈 ∩ 𝑇) | |
| 24 | lsmdisj2r.i | . . . 4 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) | |
| 25 | 23, 24 | eqtr3id 2790 | . . 3 ⊢ (𝜑 → (𝑈 ∩ 𝑇) = { 0 }) | 
| 26 | 7, 10, 12, 14, 16, 22, 25 | lsmdisj2 19701 | . 2 ⊢ (𝜑 → (𝑇 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑆)) = { 0 }) | 
| 27 | 6, 26 | eqtr3id 2790 | 1 ⊢ (𝜑 → ((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 }) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∩ cin 3949 {csn 4625 ‘cfv 6560 (class class class)co 7432 0gc0g 17485 SubGrpcsubg 19139 oppgcoppg 19364 LSSumclsm 19653 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-tpos 8252 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-submnd 18798 df-grp 18955 df-minusg 18956 df-subg 19142 df-oppg 19365 df-lsm 19655 | 
| This theorem is referenced by: lsmdisj3r 19705 lsmdisj2b 19707 | 
| Copyright terms: Public domain | W3C validator |