![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmdisj2r | Structured version Visualization version GIF version |
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.) |
Ref | Expression |
---|---|
lsmcntz.p | ⊢ ⊕ = (LSSum‘𝐺) |
lsmcntz.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
lsmcntz.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
lsmcntz.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
lsmdisj.o | ⊢ 0 = (0g‘𝐺) |
lsmdisjr.i | ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) |
lsmdisj2r.i | ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
Ref | Expression |
---|---|
lsmdisj2r | ⊢ (𝜑 → ((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . 5 ⊢ (oppg‘𝐺) = (oppg‘𝐺) | |
2 | lsmcntz.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
3 | 1, 2 | oppglsm 19684 | . . . 4 ⊢ (𝑈(LSSum‘(oppg‘𝐺))𝑆) = (𝑆 ⊕ 𝑈) |
4 | 3 | ineq2i 4238 | . . 3 ⊢ (𝑇 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑆)) = (𝑇 ∩ (𝑆 ⊕ 𝑈)) |
5 | incom 4230 | . . 3 ⊢ (𝑇 ∩ (𝑆 ⊕ 𝑈)) = ((𝑆 ⊕ 𝑈) ∩ 𝑇) | |
6 | 4, 5 | eqtri 2768 | . 2 ⊢ (𝑇 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑆)) = ((𝑆 ⊕ 𝑈) ∩ 𝑇) |
7 | eqid 2740 | . . 3 ⊢ (LSSum‘(oppg‘𝐺)) = (LSSum‘(oppg‘𝐺)) | |
8 | lsmcntz.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
9 | 1 | oppgsubg 19406 | . . . 4 ⊢ (SubGrp‘𝐺) = (SubGrp‘(oppg‘𝐺)) |
10 | 8, 9 | eleqtrdi 2854 | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘(oppg‘𝐺))) |
11 | lsmcntz.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
12 | 11, 9 | eleqtrdi 2854 | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘(oppg‘𝐺))) |
13 | lsmcntz.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
14 | 13, 9 | eleqtrdi 2854 | . . 3 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘(oppg‘𝐺))) |
15 | lsmdisj.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
16 | 1, 15 | oppgid 19399 | . . 3 ⊢ 0 = (0g‘(oppg‘𝐺)) |
17 | 1, 2 | oppglsm 19684 | . . . . . 6 ⊢ (𝑈(LSSum‘(oppg‘𝐺))𝑇) = (𝑇 ⊕ 𝑈) |
18 | 17 | ineq1i 4237 | . . . . 5 ⊢ ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆) = ((𝑇 ⊕ 𝑈) ∩ 𝑆) |
19 | incom 4230 | . . . . 5 ⊢ ((𝑇 ⊕ 𝑈) ∩ 𝑆) = (𝑆 ∩ (𝑇 ⊕ 𝑈)) | |
20 | 18, 19 | eqtri 2768 | . . . 4 ⊢ ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆) = (𝑆 ∩ (𝑇 ⊕ 𝑈)) |
21 | lsmdisjr.i | . . . 4 ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) | |
22 | 20, 21 | eqtrid 2792 | . . 3 ⊢ (𝜑 → ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆) = { 0 }) |
23 | incom 4230 | . . . 4 ⊢ (𝑇 ∩ 𝑈) = (𝑈 ∩ 𝑇) | |
24 | lsmdisj2r.i | . . . 4 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) | |
25 | 23, 24 | eqtr3id 2794 | . . 3 ⊢ (𝜑 → (𝑈 ∩ 𝑇) = { 0 }) |
26 | 7, 10, 12, 14, 16, 22, 25 | lsmdisj2 19724 | . 2 ⊢ (𝜑 → (𝑇 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑆)) = { 0 }) |
27 | 6, 26 | eqtr3id 2794 | 1 ⊢ (𝜑 → ((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 {csn 4648 ‘cfv 6573 (class class class)co 7448 0gc0g 17499 SubGrpcsubg 19160 oppgcoppg 19385 LSSumclsm 19676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-subg 19163 df-oppg 19386 df-lsm 19678 |
This theorem is referenced by: lsmdisj3r 19728 lsmdisj2b 19730 |
Copyright terms: Public domain | W3C validator |