MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmdisj2r Structured version   Visualization version   GIF version

Theorem lsmdisj2r 18805
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.)
Hypotheses
Ref Expression
lsmcntz.p = (LSSum‘𝐺)
lsmcntz.s (𝜑𝑆 ∈ (SubGrp‘𝐺))
lsmcntz.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
lsmcntz.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
lsmdisj.o 0 = (0g𝐺)
lsmdisjr.i (𝜑 → (𝑆 ∩ (𝑇 𝑈)) = { 0 })
lsmdisj2r.i (𝜑 → (𝑇𝑈) = { 0 })
Assertion
Ref Expression
lsmdisj2r (𝜑 → ((𝑆 𝑈) ∩ 𝑇) = { 0 })

Proof of Theorem lsmdisj2r
StepHypRef Expression
1 eqid 2821 . . . . 5 (oppg𝐺) = (oppg𝐺)
2 lsmcntz.p . . . . 5 = (LSSum‘𝐺)
31, 2oppglsm 18761 . . . 4 (𝑈(LSSum‘(oppg𝐺))𝑆) = (𝑆 𝑈)
43ineq2i 4186 . . 3 (𝑇 ∩ (𝑈(LSSum‘(oppg𝐺))𝑆)) = (𝑇 ∩ (𝑆 𝑈))
5 incom 4178 . . 3 (𝑇 ∩ (𝑆 𝑈)) = ((𝑆 𝑈) ∩ 𝑇)
64, 5eqtri 2844 . 2 (𝑇 ∩ (𝑈(LSSum‘(oppg𝐺))𝑆)) = ((𝑆 𝑈) ∩ 𝑇)
7 eqid 2821 . . 3 (LSSum‘(oppg𝐺)) = (LSSum‘(oppg𝐺))
8 lsmcntz.u . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝐺))
91oppgsubg 18485 . . . 4 (SubGrp‘𝐺) = (SubGrp‘(oppg𝐺))
108, 9eleqtrdi 2923 . . 3 (𝜑𝑈 ∈ (SubGrp‘(oppg𝐺)))
11 lsmcntz.t . . . 4 (𝜑𝑇 ∈ (SubGrp‘𝐺))
1211, 9eleqtrdi 2923 . . 3 (𝜑𝑇 ∈ (SubGrp‘(oppg𝐺)))
13 lsmcntz.s . . . 4 (𝜑𝑆 ∈ (SubGrp‘𝐺))
1413, 9eleqtrdi 2923 . . 3 (𝜑𝑆 ∈ (SubGrp‘(oppg𝐺)))
15 lsmdisj.o . . . 4 0 = (0g𝐺)
161, 15oppgid 18478 . . 3 0 = (0g‘(oppg𝐺))
171, 2oppglsm 18761 . . . . . 6 (𝑈(LSSum‘(oppg𝐺))𝑇) = (𝑇 𝑈)
1817ineq1i 4185 . . . . 5 ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆) = ((𝑇 𝑈) ∩ 𝑆)
19 incom 4178 . . . . 5 ((𝑇 𝑈) ∩ 𝑆) = (𝑆 ∩ (𝑇 𝑈))
2018, 19eqtri 2844 . . . 4 ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆) = (𝑆 ∩ (𝑇 𝑈))
21 lsmdisjr.i . . . 4 (𝜑 → (𝑆 ∩ (𝑇 𝑈)) = { 0 })
2220, 21syl5eq 2868 . . 3 (𝜑 → ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆) = { 0 })
23 incom 4178 . . . 4 (𝑇𝑈) = (𝑈𝑇)
24 lsmdisj2r.i . . . 4 (𝜑 → (𝑇𝑈) = { 0 })
2523, 24syl5eqr 2870 . . 3 (𝜑 → (𝑈𝑇) = { 0 })
267, 10, 12, 14, 16, 22, 25lsmdisj2 18802 . 2 (𝜑 → (𝑇 ∩ (𝑈(LSSum‘(oppg𝐺))𝑆)) = { 0 })
276, 26syl5eqr 2870 1 (𝜑 → ((𝑆 𝑈) ∩ 𝑇) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  cin 3935  {csn 4561  cfv 6350  (class class class)co 7150  0gc0g 16707  SubGrpcsubg 18267  oppgcoppg 18467  LSSumclsm 18753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-grp 18100  df-minusg 18101  df-subg 18270  df-oppg 18468  df-lsm 18755
This theorem is referenced by:  lsmdisj3r  18806  lsmdisj2b  18808
  Copyright terms: Public domain W3C validator