| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmdisj2r | Structured version Visualization version GIF version | ||
| Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.) |
| Ref | Expression |
|---|---|
| lsmcntz.p | ⊢ ⊕ = (LSSum‘𝐺) |
| lsmcntz.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
| lsmcntz.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
| lsmcntz.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
| lsmdisj.o | ⊢ 0 = (0g‘𝐺) |
| lsmdisjr.i | ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) |
| lsmdisj2r.i | ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
| Ref | Expression |
|---|---|
| lsmdisj2r | ⊢ (𝜑 → ((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ (oppg‘𝐺) = (oppg‘𝐺) | |
| 2 | lsmcntz.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
| 3 | 1, 2 | oppglsm 19572 | . . . 4 ⊢ (𝑈(LSSum‘(oppg‘𝐺))𝑆) = (𝑆 ⊕ 𝑈) |
| 4 | 3 | ineq2i 4180 | . . 3 ⊢ (𝑇 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑆)) = (𝑇 ∩ (𝑆 ⊕ 𝑈)) |
| 5 | incom 4172 | . . 3 ⊢ (𝑇 ∩ (𝑆 ⊕ 𝑈)) = ((𝑆 ⊕ 𝑈) ∩ 𝑇) | |
| 6 | 4, 5 | eqtri 2752 | . 2 ⊢ (𝑇 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑆)) = ((𝑆 ⊕ 𝑈) ∩ 𝑇) |
| 7 | eqid 2729 | . . 3 ⊢ (LSSum‘(oppg‘𝐺)) = (LSSum‘(oppg‘𝐺)) | |
| 8 | lsmcntz.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
| 9 | 1 | oppgsubg 19295 | . . . 4 ⊢ (SubGrp‘𝐺) = (SubGrp‘(oppg‘𝐺)) |
| 10 | 8, 9 | eleqtrdi 2838 | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘(oppg‘𝐺))) |
| 11 | lsmcntz.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
| 12 | 11, 9 | eleqtrdi 2838 | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘(oppg‘𝐺))) |
| 13 | lsmcntz.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 14 | 13, 9 | eleqtrdi 2838 | . . 3 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘(oppg‘𝐺))) |
| 15 | lsmdisj.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 16 | 1, 15 | oppgid 19288 | . . 3 ⊢ 0 = (0g‘(oppg‘𝐺)) |
| 17 | 1, 2 | oppglsm 19572 | . . . . . 6 ⊢ (𝑈(LSSum‘(oppg‘𝐺))𝑇) = (𝑇 ⊕ 𝑈) |
| 18 | 17 | ineq1i 4179 | . . . . 5 ⊢ ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆) = ((𝑇 ⊕ 𝑈) ∩ 𝑆) |
| 19 | incom 4172 | . . . . 5 ⊢ ((𝑇 ⊕ 𝑈) ∩ 𝑆) = (𝑆 ∩ (𝑇 ⊕ 𝑈)) | |
| 20 | 18, 19 | eqtri 2752 | . . . 4 ⊢ ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆) = (𝑆 ∩ (𝑇 ⊕ 𝑈)) |
| 21 | lsmdisjr.i | . . . 4 ⊢ (𝜑 → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) | |
| 22 | 20, 21 | eqtrid 2776 | . . 3 ⊢ (𝜑 → ((𝑈(LSSum‘(oppg‘𝐺))𝑇) ∩ 𝑆) = { 0 }) |
| 23 | incom 4172 | . . . 4 ⊢ (𝑇 ∩ 𝑈) = (𝑈 ∩ 𝑇) | |
| 24 | lsmdisj2r.i | . . . 4 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) | |
| 25 | 23, 24 | eqtr3id 2778 | . . 3 ⊢ (𝜑 → (𝑈 ∩ 𝑇) = { 0 }) |
| 26 | 7, 10, 12, 14, 16, 22, 25 | lsmdisj2 19612 | . 2 ⊢ (𝜑 → (𝑇 ∩ (𝑈(LSSum‘(oppg‘𝐺))𝑆)) = { 0 }) |
| 27 | 6, 26 | eqtr3id 2778 | 1 ⊢ (𝜑 → ((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 }) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 {csn 4589 ‘cfv 6511 (class class class)co 7387 0gc0g 17402 SubGrpcsubg 19052 oppgcoppg 19277 LSSumclsm 19564 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-subg 19055 df-oppg 19278 df-lsm 19566 |
| This theorem is referenced by: lsmdisj3r 19616 lsmdisj2b 19618 |
| Copyright terms: Public domain | W3C validator |