MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmdisj2r Structured version   Visualization version   GIF version

Theorem lsmdisj2r 19624
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.)
Hypotheses
Ref Expression
lsmcntz.p = (LSSum‘𝐺)
lsmcntz.s (𝜑𝑆 ∈ (SubGrp‘𝐺))
lsmcntz.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
lsmcntz.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
lsmdisj.o 0 = (0g𝐺)
lsmdisjr.i (𝜑 → (𝑆 ∩ (𝑇 𝑈)) = { 0 })
lsmdisj2r.i (𝜑 → (𝑇𝑈) = { 0 })
Assertion
Ref Expression
lsmdisj2r (𝜑 → ((𝑆 𝑈) ∩ 𝑇) = { 0 })

Proof of Theorem lsmdisj2r
StepHypRef Expression
1 eqid 2727 . . . . 5 (oppg𝐺) = (oppg𝐺)
2 lsmcntz.p . . . . 5 = (LSSum‘𝐺)
31, 2oppglsm 19581 . . . 4 (𝑈(LSSum‘(oppg𝐺))𝑆) = (𝑆 𝑈)
43ineq2i 4205 . . 3 (𝑇 ∩ (𝑈(LSSum‘(oppg𝐺))𝑆)) = (𝑇 ∩ (𝑆 𝑈))
5 incom 4197 . . 3 (𝑇 ∩ (𝑆 𝑈)) = ((𝑆 𝑈) ∩ 𝑇)
64, 5eqtri 2755 . 2 (𝑇 ∩ (𝑈(LSSum‘(oppg𝐺))𝑆)) = ((𝑆 𝑈) ∩ 𝑇)
7 eqid 2727 . . 3 (LSSum‘(oppg𝐺)) = (LSSum‘(oppg𝐺))
8 lsmcntz.u . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝐺))
91oppgsubg 19301 . . . 4 (SubGrp‘𝐺) = (SubGrp‘(oppg𝐺))
108, 9eleqtrdi 2838 . . 3 (𝜑𝑈 ∈ (SubGrp‘(oppg𝐺)))
11 lsmcntz.t . . . 4 (𝜑𝑇 ∈ (SubGrp‘𝐺))
1211, 9eleqtrdi 2838 . . 3 (𝜑𝑇 ∈ (SubGrp‘(oppg𝐺)))
13 lsmcntz.s . . . 4 (𝜑𝑆 ∈ (SubGrp‘𝐺))
1413, 9eleqtrdi 2838 . . 3 (𝜑𝑆 ∈ (SubGrp‘(oppg𝐺)))
15 lsmdisj.o . . . 4 0 = (0g𝐺)
161, 15oppgid 19294 . . 3 0 = (0g‘(oppg𝐺))
171, 2oppglsm 19581 . . . . . 6 (𝑈(LSSum‘(oppg𝐺))𝑇) = (𝑇 𝑈)
1817ineq1i 4204 . . . . 5 ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆) = ((𝑇 𝑈) ∩ 𝑆)
19 incom 4197 . . . . 5 ((𝑇 𝑈) ∩ 𝑆) = (𝑆 ∩ (𝑇 𝑈))
2018, 19eqtri 2755 . . . 4 ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆) = (𝑆 ∩ (𝑇 𝑈))
21 lsmdisjr.i . . . 4 (𝜑 → (𝑆 ∩ (𝑇 𝑈)) = { 0 })
2220, 21eqtrid 2779 . . 3 (𝜑 → ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆) = { 0 })
23 incom 4197 . . . 4 (𝑇𝑈) = (𝑈𝑇)
24 lsmdisj2r.i . . . 4 (𝜑 → (𝑇𝑈) = { 0 })
2523, 24eqtr3id 2781 . . 3 (𝜑 → (𝑈𝑇) = { 0 })
267, 10, 12, 14, 16, 22, 25lsmdisj2 19621 . 2 (𝜑 → (𝑇 ∩ (𝑈(LSSum‘(oppg𝐺))𝑆)) = { 0 })
276, 26eqtr3id 2781 1 (𝜑 → ((𝑆 𝑈) ∩ 𝑇) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  cin 3943  {csn 4624  cfv 6542  (class class class)co 7414  0gc0g 17406  SubGrpcsubg 19059  oppgcoppg 19280  LSSumclsm 19573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-1st 7985  df-2nd 7986  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8716  df-en 8954  df-dom 8955  df-sdom 8956  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-nn 12229  df-2 12291  df-sets 17118  df-slot 17136  df-ndx 17148  df-base 17166  df-ress 17195  df-plusg 17231  df-0g 17408  df-mgm 18585  df-sgrp 18664  df-mnd 18680  df-submnd 18726  df-grp 18878  df-minusg 18879  df-subg 19062  df-oppg 19281  df-lsm 19575
This theorem is referenced by:  lsmdisj3r  19625  lsmdisj2b  19627
  Copyright terms: Public domain W3C validator