![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgghm | Structured version Visualization version GIF version |
Description: The map from 𝑥 to 𝑛𝑥 for a fixed integer 𝑛 is a group homomorphism if the group is commutative. (Contributed by Mario Carneiro, 4-May-2015.) |
Ref | Expression |
---|---|
mulgmhm.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgmhm.m | ⊢ · = (.g‘𝐺) |
Ref | Expression |
---|---|
mulgghm | ⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 GrpHom 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgmhm.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2735 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | ablgrp 19818 | . . 3 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
4 | 3 | adantr 480 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → 𝐺 ∈ Grp) |
5 | mulgmhm.m | . . . . . 6 ⊢ · = (.g‘𝐺) | |
6 | 1, 5 | mulgcl 19122 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝐵) → (𝑀 · 𝑥) ∈ 𝐵) |
7 | 3, 6 | syl3an1 1162 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝐵) → (𝑀 · 𝑥) ∈ 𝐵) |
8 | 7 | 3expa 1117 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ 𝑥 ∈ 𝐵) → (𝑀 · 𝑥) ∈ 𝐵) |
9 | 8 | fmpttd 7135 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)):𝐵⟶𝐵) |
10 | 3anass 1094 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ↔ (𝑀 ∈ ℤ ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) | |
11 | 1, 5, 2 | mulgdi 19859 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑀 · (𝑦(+g‘𝐺)𝑧)) = ((𝑀 · 𝑦)(+g‘𝐺)(𝑀 · 𝑧))) |
12 | 10, 11 | sylan2br 595 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → (𝑀 · (𝑦(+g‘𝐺)𝑧)) = ((𝑀 · 𝑦)(+g‘𝐺)(𝑀 · 𝑧))) |
13 | 12 | anassrs 467 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑀 · (𝑦(+g‘𝐺)𝑧)) = ((𝑀 · 𝑦)(+g‘𝐺)(𝑀 · 𝑧))) |
14 | 1, 2 | grpcl 18972 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝐺)𝑧) ∈ 𝐵) |
15 | 14 | 3expb 1119 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝐺)𝑧) ∈ 𝐵) |
16 | 4, 15 | sylan 580 | . . . 4 ⊢ (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝐺)𝑧) ∈ 𝐵) |
17 | oveq2 7439 | . . . . 5 ⊢ (𝑥 = (𝑦(+g‘𝐺)𝑧) → (𝑀 · 𝑥) = (𝑀 · (𝑦(+g‘𝐺)𝑧))) | |
18 | eqid 2735 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) | |
19 | ovex 7464 | . . . . 5 ⊢ (𝑀 · (𝑦(+g‘𝐺)𝑧)) ∈ V | |
20 | 17, 18, 19 | fvmpt 7016 | . . . 4 ⊢ ((𝑦(+g‘𝐺)𝑧) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g‘𝐺)𝑧)) = (𝑀 · (𝑦(+g‘𝐺)𝑧))) |
21 | 16, 20 | syl 17 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g‘𝐺)𝑧)) = (𝑀 · (𝑦(+g‘𝐺)𝑧))) |
22 | oveq2 7439 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑀 · 𝑥) = (𝑀 · 𝑦)) | |
23 | ovex 7464 | . . . . . 6 ⊢ (𝑀 · 𝑦) ∈ V | |
24 | 22, 18, 23 | fvmpt 7016 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑦) = (𝑀 · 𝑦)) |
25 | oveq2 7439 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑀 · 𝑥) = (𝑀 · 𝑧)) | |
26 | ovex 7464 | . . . . . 6 ⊢ (𝑀 · 𝑧) ∈ V | |
27 | 25, 18, 26 | fvmpt 7016 | . . . . 5 ⊢ (𝑧 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑧) = (𝑀 · 𝑧)) |
28 | 24, 27 | oveqan12d 7450 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g‘𝐺)((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) = ((𝑀 · 𝑦)(+g‘𝐺)(𝑀 · 𝑧))) |
29 | 28 | adantl 481 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g‘𝐺)((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) = ((𝑀 · 𝑦)(+g‘𝐺)(𝑀 · 𝑧))) |
30 | 13, 21, 29 | 3eqtr4d 2785 | . 2 ⊢ (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g‘𝐺)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g‘𝐺)((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑧))) |
31 | 1, 1, 2, 2, 4, 4, 9, 30 | isghmd 19256 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 GrpHom 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ↦ cmpt 5231 ‘cfv 6563 (class class class)co 7431 ℤcz 12611 Basecbs 17245 +gcplusg 17298 Grpcgrp 18964 .gcmg 19098 GrpHom cghm 19243 Abelcabl 19814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-seq 14040 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-mulg 19099 df-ghm 19244 df-cmn 19815 df-abl 19816 |
This theorem is referenced by: gsummulglem 19974 |
Copyright terms: Public domain | W3C validator |