| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgghm | Structured version Visualization version GIF version | ||
| Description: The map from 𝑥 to 𝑛𝑥 for a fixed integer 𝑛 is a group homomorphism if the group is commutative. (Contributed by Mario Carneiro, 4-May-2015.) |
| Ref | Expression |
|---|---|
| mulgmhm.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgmhm.m | ⊢ · = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| mulgghm | ⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 GrpHom 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgmhm.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2735 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | ablgrp 19766 | . . 3 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → 𝐺 ∈ Grp) |
| 5 | mulgmhm.m | . . . . . 6 ⊢ · = (.g‘𝐺) | |
| 6 | 1, 5 | mulgcl 19074 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝐵) → (𝑀 · 𝑥) ∈ 𝐵) |
| 7 | 3, 6 | syl3an1 1163 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝐵) → (𝑀 · 𝑥) ∈ 𝐵) |
| 8 | 7 | 3expa 1118 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ 𝑥 ∈ 𝐵) → (𝑀 · 𝑥) ∈ 𝐵) |
| 9 | 8 | fmpttd 7105 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)):𝐵⟶𝐵) |
| 10 | 3anass 1094 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ↔ (𝑀 ∈ ℤ ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) | |
| 11 | 1, 5, 2 | mulgdi 19807 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑀 · (𝑦(+g‘𝐺)𝑧)) = ((𝑀 · 𝑦)(+g‘𝐺)(𝑀 · 𝑧))) |
| 12 | 10, 11 | sylan2br 595 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → (𝑀 · (𝑦(+g‘𝐺)𝑧)) = ((𝑀 · 𝑦)(+g‘𝐺)(𝑀 · 𝑧))) |
| 13 | 12 | anassrs 467 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑀 · (𝑦(+g‘𝐺)𝑧)) = ((𝑀 · 𝑦)(+g‘𝐺)(𝑀 · 𝑧))) |
| 14 | 1, 2 | grpcl 18924 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝐺)𝑧) ∈ 𝐵) |
| 15 | 14 | 3expb 1120 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝐺)𝑧) ∈ 𝐵) |
| 16 | 4, 15 | sylan 580 | . . . 4 ⊢ (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝐺)𝑧) ∈ 𝐵) |
| 17 | oveq2 7413 | . . . . 5 ⊢ (𝑥 = (𝑦(+g‘𝐺)𝑧) → (𝑀 · 𝑥) = (𝑀 · (𝑦(+g‘𝐺)𝑧))) | |
| 18 | eqid 2735 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) | |
| 19 | ovex 7438 | . . . . 5 ⊢ (𝑀 · (𝑦(+g‘𝐺)𝑧)) ∈ V | |
| 20 | 17, 18, 19 | fvmpt 6986 | . . . 4 ⊢ ((𝑦(+g‘𝐺)𝑧) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g‘𝐺)𝑧)) = (𝑀 · (𝑦(+g‘𝐺)𝑧))) |
| 21 | 16, 20 | syl 17 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g‘𝐺)𝑧)) = (𝑀 · (𝑦(+g‘𝐺)𝑧))) |
| 22 | oveq2 7413 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑀 · 𝑥) = (𝑀 · 𝑦)) | |
| 23 | ovex 7438 | . . . . . 6 ⊢ (𝑀 · 𝑦) ∈ V | |
| 24 | 22, 18, 23 | fvmpt 6986 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑦) = (𝑀 · 𝑦)) |
| 25 | oveq2 7413 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑀 · 𝑥) = (𝑀 · 𝑧)) | |
| 26 | ovex 7438 | . . . . . 6 ⊢ (𝑀 · 𝑧) ∈ V | |
| 27 | 25, 18, 26 | fvmpt 6986 | . . . . 5 ⊢ (𝑧 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑧) = (𝑀 · 𝑧)) |
| 28 | 24, 27 | oveqan12d 7424 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g‘𝐺)((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) = ((𝑀 · 𝑦)(+g‘𝐺)(𝑀 · 𝑧))) |
| 29 | 28 | adantl 481 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g‘𝐺)((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) = ((𝑀 · 𝑦)(+g‘𝐺)(𝑀 · 𝑧))) |
| 30 | 13, 21, 29 | 3eqtr4d 2780 | . 2 ⊢ (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g‘𝐺)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g‘𝐺)((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑧))) |
| 31 | 1, 1, 2, 2, 4, 4, 9, 30 | isghmd 19208 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 GrpHom 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 ℤcz 12588 Basecbs 17228 +gcplusg 17271 Grpcgrp 18916 .gcmg 19050 GrpHom cghm 19195 Abelcabl 19762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-mulg 19051 df-ghm 19196 df-cmn 19763 df-abl 19764 |
| This theorem is referenced by: gsummulglem 19922 |
| Copyright terms: Public domain | W3C validator |