Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulgghm | Structured version Visualization version GIF version |
Description: The map from 𝑥 to 𝑛𝑥 for a fixed integer 𝑛 is a group homomorphism if the group is commutative. (Contributed by Mario Carneiro, 4-May-2015.) |
Ref | Expression |
---|---|
mulgmhm.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgmhm.m | ⊢ · = (.g‘𝐺) |
Ref | Expression |
---|---|
mulgghm | ⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 GrpHom 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgmhm.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2738 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | ablgrp 19306 | . . 3 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
4 | 3 | adantr 480 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → 𝐺 ∈ Grp) |
5 | mulgmhm.m | . . . . . 6 ⊢ · = (.g‘𝐺) | |
6 | 1, 5 | mulgcl 18636 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝐵) → (𝑀 · 𝑥) ∈ 𝐵) |
7 | 3, 6 | syl3an1 1161 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝐵) → (𝑀 · 𝑥) ∈ 𝐵) |
8 | 7 | 3expa 1116 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ 𝑥 ∈ 𝐵) → (𝑀 · 𝑥) ∈ 𝐵) |
9 | 8 | fmpttd 6971 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)):𝐵⟶𝐵) |
10 | 3anass 1093 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ↔ (𝑀 ∈ ℤ ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) | |
11 | 1, 5, 2 | mulgdi 19343 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑀 · (𝑦(+g‘𝐺)𝑧)) = ((𝑀 · 𝑦)(+g‘𝐺)(𝑀 · 𝑧))) |
12 | 10, 11 | sylan2br 594 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → (𝑀 · (𝑦(+g‘𝐺)𝑧)) = ((𝑀 · 𝑦)(+g‘𝐺)(𝑀 · 𝑧))) |
13 | 12 | anassrs 467 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑀 · (𝑦(+g‘𝐺)𝑧)) = ((𝑀 · 𝑦)(+g‘𝐺)(𝑀 · 𝑧))) |
14 | 1, 2 | grpcl 18500 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝐺)𝑧) ∈ 𝐵) |
15 | 14 | 3expb 1118 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝐺)𝑧) ∈ 𝐵) |
16 | 4, 15 | sylan 579 | . . . 4 ⊢ (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝐺)𝑧) ∈ 𝐵) |
17 | oveq2 7263 | . . . . 5 ⊢ (𝑥 = (𝑦(+g‘𝐺)𝑧) → (𝑀 · 𝑥) = (𝑀 · (𝑦(+g‘𝐺)𝑧))) | |
18 | eqid 2738 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) | |
19 | ovex 7288 | . . . . 5 ⊢ (𝑀 · (𝑦(+g‘𝐺)𝑧)) ∈ V | |
20 | 17, 18, 19 | fvmpt 6857 | . . . 4 ⊢ ((𝑦(+g‘𝐺)𝑧) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g‘𝐺)𝑧)) = (𝑀 · (𝑦(+g‘𝐺)𝑧))) |
21 | 16, 20 | syl 17 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g‘𝐺)𝑧)) = (𝑀 · (𝑦(+g‘𝐺)𝑧))) |
22 | oveq2 7263 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑀 · 𝑥) = (𝑀 · 𝑦)) | |
23 | ovex 7288 | . . . . . 6 ⊢ (𝑀 · 𝑦) ∈ V | |
24 | 22, 18, 23 | fvmpt 6857 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑦) = (𝑀 · 𝑦)) |
25 | oveq2 7263 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑀 · 𝑥) = (𝑀 · 𝑧)) | |
26 | ovex 7288 | . . . . . 6 ⊢ (𝑀 · 𝑧) ∈ V | |
27 | 25, 18, 26 | fvmpt 6857 | . . . . 5 ⊢ (𝑧 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑧) = (𝑀 · 𝑧)) |
28 | 24, 27 | oveqan12d 7274 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g‘𝐺)((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) = ((𝑀 · 𝑦)(+g‘𝐺)(𝑀 · 𝑧))) |
29 | 28 | adantl 481 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g‘𝐺)((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) = ((𝑀 · 𝑦)(+g‘𝐺)(𝑀 · 𝑧))) |
30 | 13, 21, 29 | 3eqtr4d 2788 | . 2 ⊢ (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g‘𝐺)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g‘𝐺)((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑧))) |
31 | 1, 1, 2, 2, 4, 4, 9, 30 | isghmd 18758 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 GrpHom 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 ℤcz 12249 Basecbs 16840 +gcplusg 16888 Grpcgrp 18492 .gcmg 18615 GrpHom cghm 18746 Abelcabl 19302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-mulg 18616 df-ghm 18747 df-cmn 19303 df-abl 19304 |
This theorem is referenced by: gsummulglem 19457 |
Copyright terms: Public domain | W3C validator |