MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgghm Structured version   Visualization version   GIF version

Theorem mulgghm 19740
Description: The map from 𝑥 to 𝑛𝑥 for a fixed integer 𝑛 is a group homomorphism if the group is commutative. (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
mulgmhm.b 𝐵 = (Base‘𝐺)
mulgmhm.m · = (.g𝐺)
Assertion
Ref Expression
mulgghm ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → (𝑥𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 GrpHom 𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑀   𝑥, ·

Proof of Theorem mulgghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgmhm.b . 2 𝐵 = (Base‘𝐺)
2 eqid 2731 . 2 (+g𝐺) = (+g𝐺)
3 ablgrp 19697 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
43adantr 480 . 2 ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → 𝐺 ∈ Grp)
5 mulgmhm.m . . . . . 6 · = (.g𝐺)
61, 5mulgcl 19004 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑥𝐵) → (𝑀 · 𝑥) ∈ 𝐵)
73, 6syl3an1 1163 . . . 4 ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ ∧ 𝑥𝐵) → (𝑀 · 𝑥) ∈ 𝐵)
873expa 1118 . . 3 (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ 𝑥𝐵) → (𝑀 · 𝑥) ∈ 𝐵)
98fmpttd 7048 . 2 ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → (𝑥𝐵 ↦ (𝑀 · 𝑥)):𝐵𝐵)
10 3anass 1094 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑦𝐵𝑧𝐵) ↔ (𝑀 ∈ ℤ ∧ (𝑦𝐵𝑧𝐵)))
111, 5, 2mulgdi 19738 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑦𝐵𝑧𝐵)) → (𝑀 · (𝑦(+g𝐺)𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
1210, 11sylan2br 595 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ (𝑦𝐵𝑧𝐵))) → (𝑀 · (𝑦(+g𝐺)𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
1312anassrs 467 . . 3 (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦𝐵𝑧𝐵)) → (𝑀 · (𝑦(+g𝐺)𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
141, 2grpcl 18854 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
15143expb 1120 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
164, 15sylan 580 . . . 4 (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
17 oveq2 7354 . . . . 5 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑀 · 𝑥) = (𝑀 · (𝑦(+g𝐺)𝑧)))
18 eqid 2731 . . . . 5 (𝑥𝐵 ↦ (𝑀 · 𝑥)) = (𝑥𝐵 ↦ (𝑀 · 𝑥))
19 ovex 7379 . . . . 5 (𝑀 · (𝑦(+g𝐺)𝑧)) ∈ V
2017, 18, 19fvmpt 6929 . . . 4 ((𝑦(+g𝐺)𝑧) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (𝑀 · (𝑦(+g𝐺)𝑧)))
2116, 20syl 17 . . 3 (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (𝑀 · (𝑦(+g𝐺)𝑧)))
22 oveq2 7354 . . . . . 6 (𝑥 = 𝑦 → (𝑀 · 𝑥) = (𝑀 · 𝑦))
23 ovex 7379 . . . . . 6 (𝑀 · 𝑦) ∈ V
2422, 18, 23fvmpt 6929 . . . . 5 (𝑦𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦) = (𝑀 · 𝑦))
25 oveq2 7354 . . . . . 6 (𝑥 = 𝑧 → (𝑀 · 𝑥) = (𝑀 · 𝑧))
26 ovex 7379 . . . . . 6 (𝑀 · 𝑧) ∈ V
2725, 18, 26fvmpt 6929 . . . . 5 (𝑧𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧) = (𝑀 · 𝑧))
2824, 27oveqan12d 7365 . . . 4 ((𝑦𝐵𝑧𝐵) → (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
2928adantl 481 . . 3 (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦𝐵𝑧𝐵)) → (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
3013, 21, 293eqtr4d 2776 . 2 (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)))
311, 1, 2, 2, 4, 4, 9, 30isghmd 19137 1 ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → (𝑥𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 GrpHom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cmpt 5170  cfv 6481  (class class class)co 7346  cz 12468  Basecbs 17120  +gcplusg 17161  Grpcgrp 18846  .gcmg 18980   GrpHom cghm 19124  Abelcabl 19693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-mulg 18981  df-ghm 19125  df-cmn 19694  df-abl 19695
This theorem is referenced by:  gsummulglem  19853
  Copyright terms: Public domain W3C validator