| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgghm | Structured version Visualization version GIF version | ||
| Description: The map from 𝑥 to 𝑛𝑥 for a fixed integer 𝑛 is a group homomorphism if the group is commutative. (Contributed by Mario Carneiro, 4-May-2015.) |
| Ref | Expression |
|---|---|
| mulgmhm.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgmhm.m | ⊢ · = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| mulgghm | ⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 GrpHom 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgmhm.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2729 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | ablgrp 19699 | . . 3 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → 𝐺 ∈ Grp) |
| 5 | mulgmhm.m | . . . . . 6 ⊢ · = (.g‘𝐺) | |
| 6 | 1, 5 | mulgcl 19005 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝐵) → (𝑀 · 𝑥) ∈ 𝐵) |
| 7 | 3, 6 | syl3an1 1163 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝐵) → (𝑀 · 𝑥) ∈ 𝐵) |
| 8 | 7 | 3expa 1118 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ 𝑥 ∈ 𝐵) → (𝑀 · 𝑥) ∈ 𝐵) |
| 9 | 8 | fmpttd 7069 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)):𝐵⟶𝐵) |
| 10 | 3anass 1094 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ↔ (𝑀 ∈ ℤ ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) | |
| 11 | 1, 5, 2 | mulgdi 19740 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑀 · (𝑦(+g‘𝐺)𝑧)) = ((𝑀 · 𝑦)(+g‘𝐺)(𝑀 · 𝑧))) |
| 12 | 10, 11 | sylan2br 595 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → (𝑀 · (𝑦(+g‘𝐺)𝑧)) = ((𝑀 · 𝑦)(+g‘𝐺)(𝑀 · 𝑧))) |
| 13 | 12 | anassrs 467 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑀 · (𝑦(+g‘𝐺)𝑧)) = ((𝑀 · 𝑦)(+g‘𝐺)(𝑀 · 𝑧))) |
| 14 | 1, 2 | grpcl 18855 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝐺)𝑧) ∈ 𝐵) |
| 15 | 14 | 3expb 1120 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝐺)𝑧) ∈ 𝐵) |
| 16 | 4, 15 | sylan 580 | . . . 4 ⊢ (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝐺)𝑧) ∈ 𝐵) |
| 17 | oveq2 7377 | . . . . 5 ⊢ (𝑥 = (𝑦(+g‘𝐺)𝑧) → (𝑀 · 𝑥) = (𝑀 · (𝑦(+g‘𝐺)𝑧))) | |
| 18 | eqid 2729 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) | |
| 19 | ovex 7402 | . . . . 5 ⊢ (𝑀 · (𝑦(+g‘𝐺)𝑧)) ∈ V | |
| 20 | 17, 18, 19 | fvmpt 6950 | . . . 4 ⊢ ((𝑦(+g‘𝐺)𝑧) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g‘𝐺)𝑧)) = (𝑀 · (𝑦(+g‘𝐺)𝑧))) |
| 21 | 16, 20 | syl 17 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g‘𝐺)𝑧)) = (𝑀 · (𝑦(+g‘𝐺)𝑧))) |
| 22 | oveq2 7377 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑀 · 𝑥) = (𝑀 · 𝑦)) | |
| 23 | ovex 7402 | . . . . . 6 ⊢ (𝑀 · 𝑦) ∈ V | |
| 24 | 22, 18, 23 | fvmpt 6950 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑦) = (𝑀 · 𝑦)) |
| 25 | oveq2 7377 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑀 · 𝑥) = (𝑀 · 𝑧)) | |
| 26 | ovex 7402 | . . . . . 6 ⊢ (𝑀 · 𝑧) ∈ V | |
| 27 | 25, 18, 26 | fvmpt 6950 | . . . . 5 ⊢ (𝑧 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑧) = (𝑀 · 𝑧)) |
| 28 | 24, 27 | oveqan12d 7388 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g‘𝐺)((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) = ((𝑀 · 𝑦)(+g‘𝐺)(𝑀 · 𝑧))) |
| 29 | 28 | adantl 481 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g‘𝐺)((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) = ((𝑀 · 𝑦)(+g‘𝐺)(𝑀 · 𝑧))) |
| 30 | 13, 21, 29 | 3eqtr4d 2774 | . 2 ⊢ (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g‘𝐺)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g‘𝐺)((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑧))) |
| 31 | 1, 1, 2, 2, 4, 4, 9, 30 | isghmd 19139 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 GrpHom 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 ℤcz 12505 Basecbs 17155 +gcplusg 17196 Grpcgrp 18847 .gcmg 18981 GrpHom cghm 19126 Abelcabl 19695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-0g 17380 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-grp 18850 df-minusg 18851 df-mulg 18982 df-ghm 19127 df-cmn 19696 df-abl 19697 |
| This theorem is referenced by: gsummulglem 19855 |
| Copyright terms: Public domain | W3C validator |