MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgghm Structured version   Visualization version   GIF version

Theorem mulgghm 18878
Description: The map from 𝑥 to 𝑛𝑥 for a fixed integer 𝑛 is a group homomorphism if the group is commutative. (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
mulgmhm.b 𝐵 = (Base‘𝐺)
mulgmhm.m · = (.g𝐺)
Assertion
Ref Expression
mulgghm ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → (𝑥𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 GrpHom 𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑀   𝑥, ·

Proof of Theorem mulgghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgmhm.b . 2 𝐵 = (Base‘𝐺)
2 eqid 2818 . 2 (+g𝐺) = (+g𝐺)
3 ablgrp 18840 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
43adantr 481 . 2 ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → 𝐺 ∈ Grp)
5 mulgmhm.m . . . . . 6 · = (.g𝐺)
61, 5mulgcl 18183 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑥𝐵) → (𝑀 · 𝑥) ∈ 𝐵)
73, 6syl3an1 1155 . . . 4 ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ ∧ 𝑥𝐵) → (𝑀 · 𝑥) ∈ 𝐵)
873expa 1110 . . 3 (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ 𝑥𝐵) → (𝑀 · 𝑥) ∈ 𝐵)
98fmpttd 6871 . 2 ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → (𝑥𝐵 ↦ (𝑀 · 𝑥)):𝐵𝐵)
10 3anass 1087 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑦𝐵𝑧𝐵) ↔ (𝑀 ∈ ℤ ∧ (𝑦𝐵𝑧𝐵)))
111, 5, 2mulgdi 18876 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑦𝐵𝑧𝐵)) → (𝑀 · (𝑦(+g𝐺)𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
1210, 11sylan2br 594 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ (𝑦𝐵𝑧𝐵))) → (𝑀 · (𝑦(+g𝐺)𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
1312anassrs 468 . . 3 (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦𝐵𝑧𝐵)) → (𝑀 · (𝑦(+g𝐺)𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
141, 2grpcl 18049 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
15143expb 1112 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
164, 15sylan 580 . . . 4 (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
17 oveq2 7153 . . . . 5 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑀 · 𝑥) = (𝑀 · (𝑦(+g𝐺)𝑧)))
18 eqid 2818 . . . . 5 (𝑥𝐵 ↦ (𝑀 · 𝑥)) = (𝑥𝐵 ↦ (𝑀 · 𝑥))
19 ovex 7178 . . . . 5 (𝑀 · (𝑦(+g𝐺)𝑧)) ∈ V
2017, 18, 19fvmpt 6761 . . . 4 ((𝑦(+g𝐺)𝑧) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (𝑀 · (𝑦(+g𝐺)𝑧)))
2116, 20syl 17 . . 3 (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (𝑀 · (𝑦(+g𝐺)𝑧)))
22 oveq2 7153 . . . . . 6 (𝑥 = 𝑦 → (𝑀 · 𝑥) = (𝑀 · 𝑦))
23 ovex 7178 . . . . . 6 (𝑀 · 𝑦) ∈ V
2422, 18, 23fvmpt 6761 . . . . 5 (𝑦𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦) = (𝑀 · 𝑦))
25 oveq2 7153 . . . . . 6 (𝑥 = 𝑧 → (𝑀 · 𝑥) = (𝑀 · 𝑧))
26 ovex 7178 . . . . . 6 (𝑀 · 𝑧) ∈ V
2725, 18, 26fvmpt 6761 . . . . 5 (𝑧𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧) = (𝑀 · 𝑧))
2824, 27oveqan12d 7164 . . . 4 ((𝑦𝐵𝑧𝐵) → (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
2928adantl 482 . . 3 (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦𝐵𝑧𝐵)) → (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
3013, 21, 293eqtr4d 2863 . 2 (((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)))
311, 1, 2, 2, 4, 4, 9, 30isghmd 18305 1 ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → (𝑥𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 GrpHom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  cmpt 5137  cfv 6348  (class class class)co 7145  cz 11969  Basecbs 16471  +gcplusg 16553  Grpcgrp 18041  .gcmg 18162   GrpHom cghm 18293  Abelcabl 18836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-seq 13358  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-mulg 18163  df-ghm 18294  df-cmn 18837  df-abl 18838
This theorem is referenced by:  gsummulglem  18990
  Copyright terms: Public domain W3C validator