MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrhmd Structured version   Visualization version   GIF version

Theorem isrhmd 20456
Description: Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015.)
Hypotheses
Ref Expression
isrhmd.b 𝐵 = (Base‘𝑅)
isrhmd.o 1 = (1r𝑅)
isrhmd.n 𝑁 = (1r𝑆)
isrhmd.t · = (.r𝑅)
isrhmd.u × = (.r𝑆)
isrhmd.r (𝜑𝑅 ∈ Ring)
isrhmd.s (𝜑𝑆 ∈ Ring)
isrhmd.ho (𝜑 → (𝐹1 ) = 𝑁)
isrhmd.ht ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))
isrhmd.c 𝐶 = (Base‘𝑆)
isrhmd.p + = (+g𝑅)
isrhmd.q = (+g𝑆)
isrhmd.f (𝜑𝐹:𝐵𝐶)
isrhmd.hp ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
Assertion
Ref Expression
isrhmd (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥, + ,𝑦   𝑥, ,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   × (𝑥,𝑦)   1 (𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem isrhmd
StepHypRef Expression
1 isrhmd.b . 2 𝐵 = (Base‘𝑅)
2 isrhmd.o . 2 1 = (1r𝑅)
3 isrhmd.n . 2 𝑁 = (1r𝑆)
4 isrhmd.t . 2 · = (.r𝑅)
5 isrhmd.u . 2 × = (.r𝑆)
6 isrhmd.r . 2 (𝜑𝑅 ∈ Ring)
7 isrhmd.s . 2 (𝜑𝑆 ∈ Ring)
8 isrhmd.ho . 2 (𝜑 → (𝐹1 ) = 𝑁)
9 isrhmd.ht . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))
10 isrhmd.c . . 3 𝐶 = (Base‘𝑆)
11 isrhmd.p . . 3 + = (+g𝑅)
12 isrhmd.q . . 3 = (+g𝑆)
13 ringgrp 20203 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
146, 13syl 17 . . 3 (𝜑𝑅 ∈ Grp)
15 ringgrp 20203 . . . 4 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
167, 15syl 17 . . 3 (𝜑𝑆 ∈ Grp)
17 isrhmd.f . . 3 (𝜑𝐹:𝐵𝐶)
18 isrhmd.hp . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
191, 10, 11, 12, 14, 16, 17, 18isghmd 19212 . 2 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
201, 2, 3, 4, 5, 6, 7, 8, 9, 19isrhm2d 20455 1 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wf 6537  cfv 6541  (class class class)co 7413  Basecbs 17229  +gcplusg 17273  .rcmulr 17274  Grpcgrp 18920  1rcur 20146  Ringcrg 20198   RingHom crh 20437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-plusg 17286  df-0g 17457  df-mhm 18765  df-ghm 19200  df-mgp 20106  df-ur 20147  df-ring 20200  df-rhm 20440
This theorem is referenced by:  issrngd  20824  frobrhm  21548  evlslem1  22054  evls1maprhm  22328  rhmmpl  22335  rlocf1  33216  imasrhm  33319  qqhrhm  33949  rhmpsr  42525  evlsmaprhm  42543
  Copyright terms: Public domain W3C validator