![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isrhmd | Structured version Visualization version GIF version |
Description: Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
Ref | Expression |
---|---|
isrhmd.b | ⊢ 𝐵 = (Base‘𝑅) |
isrhmd.o | ⊢ 1 = (1r‘𝑅) |
isrhmd.n | ⊢ 𝑁 = (1r‘𝑆) |
isrhmd.t | ⊢ · = (.r‘𝑅) |
isrhmd.u | ⊢ × = (.r‘𝑆) |
isrhmd.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
isrhmd.s | ⊢ (𝜑 → 𝑆 ∈ Ring) |
isrhmd.ho | ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) |
isrhmd.ht | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
isrhmd.c | ⊢ 𝐶 = (Base‘𝑆) |
isrhmd.p | ⊢ + = (+g‘𝑅) |
isrhmd.q | ⊢ ⨣ = (+g‘𝑆) |
isrhmd.f | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
isrhmd.hp | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
Ref | Expression |
---|---|
isrhmd | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrhmd.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | isrhmd.o | . 2 ⊢ 1 = (1r‘𝑅) | |
3 | isrhmd.n | . 2 ⊢ 𝑁 = (1r‘𝑆) | |
4 | isrhmd.t | . 2 ⊢ · = (.r‘𝑅) | |
5 | isrhmd.u | . 2 ⊢ × = (.r‘𝑆) | |
6 | isrhmd.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
7 | isrhmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ Ring) | |
8 | isrhmd.ho | . 2 ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) | |
9 | isrhmd.ht | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) | |
10 | isrhmd.c | . . 3 ⊢ 𝐶 = (Base‘𝑆) | |
11 | isrhmd.p | . . 3 ⊢ + = (+g‘𝑅) | |
12 | isrhmd.q | . . 3 ⊢ ⨣ = (+g‘𝑆) | |
13 | ringgrp 20267 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
14 | 6, 13 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
15 | ringgrp 20267 | . . . 4 ⊢ (𝑆 ∈ Ring → 𝑆 ∈ Grp) | |
16 | 7, 15 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ∈ Grp) |
17 | isrhmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | |
18 | isrhmd.hp | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
19 | 1, 10, 11, 12, 14, 16, 17, 18 | isghmd 19267 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 19 | isrhm2d 20515 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⟶wf 6571 ‘cfv 6575 (class class class)co 7450 Basecbs 17260 +gcplusg 17313 .rcmulr 17314 Grpcgrp 18975 1rcur 20210 Ringcrg 20262 RingHom crh 20497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-er 8765 df-map 8888 df-en 9006 df-dom 9007 df-sdom 9008 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-2 12358 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-plusg 17326 df-0g 17503 df-mhm 18820 df-ghm 19255 df-mgp 20164 df-ur 20211 df-ring 20264 df-rhm 20500 |
This theorem is referenced by: issrngd 20880 frobrhm 21619 evlslem1 22131 evls1maprhm 22403 rhmmpl 22410 rlocf1 33247 imasrhm 33351 qqhrhm 33937 rhmpsr 42509 evlsmaprhm 42527 |
Copyright terms: Public domain | W3C validator |