MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrhmd Structured version   Visualization version   GIF version

Theorem isrhmd 20397
Description: Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015.)
Hypotheses
Ref Expression
isrhmd.b 𝐵 = (Base‘𝑅)
isrhmd.o 1 = (1r𝑅)
isrhmd.n 𝑁 = (1r𝑆)
isrhmd.t · = (.r𝑅)
isrhmd.u × = (.r𝑆)
isrhmd.r (𝜑𝑅 ∈ Ring)
isrhmd.s (𝜑𝑆 ∈ Ring)
isrhmd.ho (𝜑 → (𝐹1 ) = 𝑁)
isrhmd.ht ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))
isrhmd.c 𝐶 = (Base‘𝑆)
isrhmd.p + = (+g𝑅)
isrhmd.q = (+g𝑆)
isrhmd.f (𝜑𝐹:𝐵𝐶)
isrhmd.hp ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
Assertion
Ref Expression
isrhmd (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥, + ,𝑦   𝑥, ,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   × (𝑥,𝑦)   1 (𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem isrhmd
StepHypRef Expression
1 isrhmd.b . 2 𝐵 = (Base‘𝑅)
2 isrhmd.o . 2 1 = (1r𝑅)
3 isrhmd.n . 2 𝑁 = (1r𝑆)
4 isrhmd.t . 2 · = (.r𝑅)
5 isrhmd.u . 2 × = (.r𝑆)
6 isrhmd.r . 2 (𝜑𝑅 ∈ Ring)
7 isrhmd.s . 2 (𝜑𝑆 ∈ Ring)
8 isrhmd.ho . 2 (𝜑 → (𝐹1 ) = 𝑁)
9 isrhmd.ht . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))
10 isrhmd.c . . 3 𝐶 = (Base‘𝑆)
11 isrhmd.p . . 3 + = (+g𝑅)
12 isrhmd.q . . 3 = (+g𝑆)
13 ringgrp 20147 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
146, 13syl 17 . . 3 (𝜑𝑅 ∈ Grp)
15 ringgrp 20147 . . . 4 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
167, 15syl 17 . . 3 (𝜑𝑆 ∈ Grp)
17 isrhmd.f . . 3 (𝜑𝐹:𝐵𝐶)
18 isrhmd.hp . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
191, 10, 11, 12, 14, 16, 17, 18isghmd 19157 . 2 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
201, 2, 3, 4, 5, 6, 7, 8, 9, 19isrhm2d 20396 1 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  Grpcgrp 18865  1rcur 20090  Ringcrg 20142   RingHom crh 20378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-0g 17404  df-mhm 18710  df-ghm 19145  df-mgp 20050  df-ur 20091  df-ring 20144  df-rhm 20381
This theorem is referenced by:  issrngd  20764  frobrhm  21485  evlslem1  21989  evls1maprhm  22263  rhmmpl  22270  rlocf1  33224  imasrhm  33327  qqhrhm  33979  rhmpsr  42540  evlsmaprhm  42558
  Copyright terms: Public domain W3C validator