![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isrhmd | Structured version Visualization version GIF version |
Description: Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
Ref | Expression |
---|---|
isrhmd.b | ⊢ 𝐵 = (Base‘𝑅) |
isrhmd.o | ⊢ 1 = (1r‘𝑅) |
isrhmd.n | ⊢ 𝑁 = (1r‘𝑆) |
isrhmd.t | ⊢ · = (.r‘𝑅) |
isrhmd.u | ⊢ × = (.r‘𝑆) |
isrhmd.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
isrhmd.s | ⊢ (𝜑 → 𝑆 ∈ Ring) |
isrhmd.ho | ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) |
isrhmd.ht | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
isrhmd.c | ⊢ 𝐶 = (Base‘𝑆) |
isrhmd.p | ⊢ + = (+g‘𝑅) |
isrhmd.q | ⊢ ⨣ = (+g‘𝑆) |
isrhmd.f | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
isrhmd.hp | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
Ref | Expression |
---|---|
isrhmd | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrhmd.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | isrhmd.o | . 2 ⊢ 1 = (1r‘𝑅) | |
3 | isrhmd.n | . 2 ⊢ 𝑁 = (1r‘𝑆) | |
4 | isrhmd.t | . 2 ⊢ · = (.r‘𝑅) | |
5 | isrhmd.u | . 2 ⊢ × = (.r‘𝑆) | |
6 | isrhmd.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
7 | isrhmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ Ring) | |
8 | isrhmd.ho | . 2 ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) | |
9 | isrhmd.ht | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) | |
10 | isrhmd.c | . . 3 ⊢ 𝐶 = (Base‘𝑆) | |
11 | isrhmd.p | . . 3 ⊢ + = (+g‘𝑅) | |
12 | isrhmd.q | . . 3 ⊢ ⨣ = (+g‘𝑆) | |
13 | ringgrp 20265 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
14 | 6, 13 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
15 | ringgrp 20265 | . . . 4 ⊢ (𝑆 ∈ Ring → 𝑆 ∈ Grp) | |
16 | 7, 15 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ∈ Grp) |
17 | isrhmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | |
18 | isrhmd.hp | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
19 | 1, 10, 11, 12, 14, 16, 17, 18 | isghmd 19265 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 19 | isrhm2d 20513 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⟶wf 6565 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 +gcplusg 17307 .rcmulr 17308 Grpcgrp 18973 1rcur 20208 Ringcrg 20260 RingHom crh 20495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-plusg 17320 df-0g 17497 df-mhm 18818 df-ghm 19253 df-mgp 20162 df-ur 20209 df-ring 20262 df-rhm 20498 |
This theorem is referenced by: issrngd 20882 frobrhm 21621 evlslem1 22133 evls1maprhm 22405 rhmmpl 22412 rlocf1 33292 imasrhm 33396 qqhrhm 33984 rhmpsr 42555 evlsmaprhm 42573 |
Copyright terms: Public domain | W3C validator |