MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishashinf Structured version   Visualization version   GIF version

Theorem ishashinf 14512
Description: Any set that is not finite contains subsets of arbitrarily large finite cardinality. Cf. isinf 9323. (Contributed by Thierry Arnoux, 5-Jul-2017.)
Assertion
Ref Expression
ishashinf 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛)
Distinct variable group:   𝑥,𝑛,𝐴

Proof of Theorem ishashinf
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fzfid 14024 . . . . . 6 (𝑛 ∈ ℕ → (1...𝑛) ∈ Fin)
2 ficardom 10030 . . . . . 6 ((1...𝑛) ∈ Fin → (card‘(1...𝑛)) ∈ ω)
31, 2syl 17 . . . . 5 (𝑛 ∈ ℕ → (card‘(1...𝑛)) ∈ ω)
4 isinf 9323 . . . . 5 𝐴 ∈ Fin → ∀𝑎 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑎))
5 breq2 5170 . . . . . . . 8 (𝑎 = (card‘(1...𝑛)) → (𝑥𝑎𝑥 ≈ (card‘(1...𝑛))))
65anbi2d 629 . . . . . . 7 (𝑎 = (card‘(1...𝑛)) → ((𝑥𝐴𝑥𝑎) ↔ (𝑥𝐴𝑥 ≈ (card‘(1...𝑛)))))
76exbidv 1920 . . . . . 6 (𝑎 = (card‘(1...𝑛)) → (∃𝑥(𝑥𝐴𝑥𝑎) ↔ ∃𝑥(𝑥𝐴𝑥 ≈ (card‘(1...𝑛)))))
87rspcva 3633 . . . . 5 (((card‘(1...𝑛)) ∈ ω ∧ ∀𝑎 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑎)) → ∃𝑥(𝑥𝐴𝑥 ≈ (card‘(1...𝑛))))
93, 4, 8syl2anr 596 . . . 4 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥(𝑥𝐴𝑥 ≈ (card‘(1...𝑛))))
10 velpw 4627 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1110biimpri 228 . . . . . . 7 (𝑥𝐴𝑥 ∈ 𝒫 𝐴)
1211a1i 11 . . . . . 6 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (𝑥𝐴𝑥 ∈ 𝒫 𝐴))
13 hasheni 14397 . . . . . . . . 9 (𝑥 ≈ (card‘(1...𝑛)) → (♯‘𝑥) = (♯‘(card‘(1...𝑛))))
1413adantl 481 . . . . . . . 8 (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (♯‘𝑥) = (♯‘(card‘(1...𝑛))))
15 hashcard 14404 . . . . . . . . . . 11 ((1...𝑛) ∈ Fin → (♯‘(card‘(1...𝑛))) = (♯‘(1...𝑛)))
161, 15syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (♯‘(card‘(1...𝑛))) = (♯‘(1...𝑛)))
17 nnnn0 12560 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
18 hashfz1 14395 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛)
1917, 18syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (♯‘(1...𝑛)) = 𝑛)
2016, 19eqtrd 2780 . . . . . . . . 9 (𝑛 ∈ ℕ → (♯‘(card‘(1...𝑛))) = 𝑛)
2120ad2antlr 726 . . . . . . . 8 (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (♯‘(card‘(1...𝑛))) = 𝑛)
2214, 21eqtrd 2780 . . . . . . 7 (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (♯‘𝑥) = 𝑛)
2322ex 412 . . . . . 6 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (𝑥 ≈ (card‘(1...𝑛)) → (♯‘𝑥) = 𝑛))
2412, 23anim12d 608 . . . . 5 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ((𝑥𝐴𝑥 ≈ (card‘(1...𝑛))) → (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛)))
2524eximdv 1916 . . . 4 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (∃𝑥(𝑥𝐴𝑥 ≈ (card‘(1...𝑛))) → ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛)))
269, 25mpd 15 . . 3 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛))
27 df-rex 3077 . . 3 (∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛))
2826, 27sylibr 234 . 2 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛)
2928ralrimiva 3152 1 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  wral 3067  wrex 3076  wss 3976  𝒫 cpw 4622   class class class wbr 5166  cfv 6573  (class class class)co 7448  ωcom 7903  cen 9000  Fincfn 9003  cardccrd 10004  1c1 11185  cn 12293  0cn0 12553  ...cfz 13567  chash 14379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380
This theorem is referenced by:  esumcst  34027  sge0rpcpnf  46342
  Copyright terms: Public domain W3C validator