| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ishashinf | Structured version Visualization version GIF version | ||
| Description: Any set that is not finite contains subsets of arbitrarily large finite cardinality. Cf. isinf 9214. (Contributed by Thierry Arnoux, 5-Jul-2017.) |
| Ref | Expression |
|---|---|
| ishashinf | ⊢ (¬ 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfid 13945 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → (1...𝑛) ∈ Fin) | |
| 2 | ficardom 9921 | . . . . . 6 ⊢ ((1...𝑛) ∈ Fin → (card‘(1...𝑛)) ∈ ω) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (card‘(1...𝑛)) ∈ ω) |
| 4 | isinf 9214 | . . . . 5 ⊢ (¬ 𝐴 ∈ Fin → ∀𝑎 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎)) | |
| 5 | breq2 5114 | . . . . . . . 8 ⊢ (𝑎 = (card‘(1...𝑛)) → (𝑥 ≈ 𝑎 ↔ 𝑥 ≈ (card‘(1...𝑛)))) | |
| 6 | 5 | anbi2d 630 | . . . . . . 7 ⊢ (𝑎 = (card‘(1...𝑛)) → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎) ↔ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛))))) |
| 7 | 6 | exbidv 1921 | . . . . . 6 ⊢ (𝑎 = (card‘(1...𝑛)) → (∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎) ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛))))) |
| 8 | 7 | rspcva 3589 | . . . . 5 ⊢ (((card‘(1...𝑛)) ∈ ω ∧ ∀𝑎 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛)))) |
| 9 | 3, 4, 8 | syl2anr 597 | . . . 4 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛)))) |
| 10 | velpw 4571 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
| 11 | 10 | biimpri 228 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝒫 𝐴) |
| 12 | 11 | a1i 11 | . . . . . 6 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) |
| 13 | hasheni 14320 | . . . . . . . . 9 ⊢ (𝑥 ≈ (card‘(1...𝑛)) → (♯‘𝑥) = (♯‘(card‘(1...𝑛)))) | |
| 14 | 13 | adantl 481 | . . . . . . . 8 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (♯‘𝑥) = (♯‘(card‘(1...𝑛)))) |
| 15 | hashcard 14327 | . . . . . . . . . . 11 ⊢ ((1...𝑛) ∈ Fin → (♯‘(card‘(1...𝑛))) = (♯‘(1...𝑛))) | |
| 16 | 1, 15 | syl 17 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → (♯‘(card‘(1...𝑛))) = (♯‘(1...𝑛))) |
| 17 | nnnn0 12456 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0) | |
| 18 | hashfz1 14318 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛) | |
| 19 | 17, 18 | syl 17 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → (♯‘(1...𝑛)) = 𝑛) |
| 20 | 16, 19 | eqtrd 2765 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → (♯‘(card‘(1...𝑛))) = 𝑛) |
| 21 | 20 | ad2antlr 727 | . . . . . . . 8 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (♯‘(card‘(1...𝑛))) = 𝑛) |
| 22 | 14, 21 | eqtrd 2765 | . . . . . . 7 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (♯‘𝑥) = 𝑛) |
| 23 | 22 | ex 412 | . . . . . 6 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (𝑥 ≈ (card‘(1...𝑛)) → (♯‘𝑥) = 𝑛)) |
| 24 | 12, 23 | anim12d 609 | . . . . 5 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛))) → (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛))) |
| 25 | 24 | eximdv 1917 | . . . 4 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛))) → ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛))) |
| 26 | 9, 25 | mpd 15 | . . 3 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛)) |
| 27 | df-rex 3055 | . . 3 ⊢ (∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛)) | |
| 28 | 26, 27 | sylibr 234 | . 2 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛) |
| 29 | 28 | ralrimiva 3126 | 1 ⊢ (¬ 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ⊆ wss 3917 𝒫 cpw 4566 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ωcom 7845 ≈ cen 8918 Fincfn 8921 cardccrd 9895 1c1 11076 ℕcn 12193 ℕ0cn0 12449 ...cfz 13475 ♯chash 14302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-hash 14303 |
| This theorem is referenced by: esumcst 34060 sge0rpcpnf 46426 |
| Copyright terms: Public domain | W3C validator |