![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ishashinf | Structured version Visualization version GIF version |
Description: Any set that is not finite contains subsets of arbitrarily large finite cardinality. Cf. isinf 8584. (Contributed by Thierry Arnoux, 5-Jul-2017.) |
Ref | Expression |
---|---|
ishashinf | ⊢ (¬ 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfid 13195 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → (1...𝑛) ∈ Fin) | |
2 | ficardom 9243 | . . . . . 6 ⊢ ((1...𝑛) ∈ Fin → (card‘(1...𝑛)) ∈ ω) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (card‘(1...𝑛)) ∈ ω) |
4 | isinf 8584 | . . . . 5 ⊢ (¬ 𝐴 ∈ Fin → ∀𝑎 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎)) | |
5 | breq2 4972 | . . . . . . . 8 ⊢ (𝑎 = (card‘(1...𝑛)) → (𝑥 ≈ 𝑎 ↔ 𝑥 ≈ (card‘(1...𝑛)))) | |
6 | 5 | anbi2d 628 | . . . . . . 7 ⊢ (𝑎 = (card‘(1...𝑛)) → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎) ↔ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛))))) |
7 | 6 | exbidv 1903 | . . . . . 6 ⊢ (𝑎 = (card‘(1...𝑛)) → (∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎) ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛))))) |
8 | 7 | rspcva 3559 | . . . . 5 ⊢ (((card‘(1...𝑛)) ∈ ω ∧ ∀𝑎 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛)))) |
9 | 3, 4, 8 | syl2anr 596 | . . . 4 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛)))) |
10 | selpw 4466 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
11 | 10 | biimpri 229 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝒫 𝐴) |
12 | 11 | a1i 11 | . . . . . 6 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) |
13 | hasheni 13562 | . . . . . . . . 9 ⊢ (𝑥 ≈ (card‘(1...𝑛)) → (♯‘𝑥) = (♯‘(card‘(1...𝑛)))) | |
14 | 13 | adantl 482 | . . . . . . . 8 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (♯‘𝑥) = (♯‘(card‘(1...𝑛)))) |
15 | hashcard 13570 | . . . . . . . . . . 11 ⊢ ((1...𝑛) ∈ Fin → (♯‘(card‘(1...𝑛))) = (♯‘(1...𝑛))) | |
16 | 1, 15 | syl 17 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → (♯‘(card‘(1...𝑛))) = (♯‘(1...𝑛))) |
17 | nnnn0 11758 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0) | |
18 | hashfz1 13560 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛) | |
19 | 17, 18 | syl 17 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → (♯‘(1...𝑛)) = 𝑛) |
20 | 16, 19 | eqtrd 2833 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → (♯‘(card‘(1...𝑛))) = 𝑛) |
21 | 20 | ad2antlr 723 | . . . . . . . 8 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (♯‘(card‘(1...𝑛))) = 𝑛) |
22 | 14, 21 | eqtrd 2833 | . . . . . . 7 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (♯‘𝑥) = 𝑛) |
23 | 22 | ex 413 | . . . . . 6 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (𝑥 ≈ (card‘(1...𝑛)) → (♯‘𝑥) = 𝑛)) |
24 | 12, 23 | anim12d 608 | . . . . 5 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛))) → (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛))) |
25 | 24 | eximdv 1899 | . . . 4 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛))) → ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛))) |
26 | 9, 25 | mpd 15 | . . 3 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛)) |
27 | df-rex 3113 | . . 3 ⊢ (∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛)) | |
28 | 26, 27 | sylibr 235 | . 2 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛) |
29 | 28 | ralrimiva 3151 | 1 ⊢ (¬ 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1525 ∃wex 1765 ∈ wcel 2083 ∀wral 3107 ∃wrex 3108 ⊆ wss 3865 𝒫 cpw 4459 class class class wbr 4968 ‘cfv 6232 (class class class)co 7023 ωcom 7443 ≈ cen 8361 Fincfn 8364 cardccrd 9217 1c1 10391 ℕcn 11492 ℕ0cn0 11751 ...cfz 12746 ♯chash 13544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-1st 7552 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-card 9221 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-n0 11752 df-z 11836 df-uz 12098 df-fz 12747 df-hash 13545 |
This theorem is referenced by: esumcst 30935 sge0rpcpnf 42267 |
Copyright terms: Public domain | W3C validator |