| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ishashinf | Structured version Visualization version GIF version | ||
| Description: Any set that is not finite contains subsets of arbitrarily large finite cardinality. Cf. isinf 9273. (Contributed by Thierry Arnoux, 5-Jul-2017.) |
| Ref | Expression |
|---|---|
| ishashinf | ⊢ (¬ 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfid 13996 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → (1...𝑛) ∈ Fin) | |
| 2 | ficardom 9980 | . . . . . 6 ⊢ ((1...𝑛) ∈ Fin → (card‘(1...𝑛)) ∈ ω) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (card‘(1...𝑛)) ∈ ω) |
| 4 | isinf 9273 | . . . . 5 ⊢ (¬ 𝐴 ∈ Fin → ∀𝑎 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎)) | |
| 5 | breq2 5128 | . . . . . . . 8 ⊢ (𝑎 = (card‘(1...𝑛)) → (𝑥 ≈ 𝑎 ↔ 𝑥 ≈ (card‘(1...𝑛)))) | |
| 6 | 5 | anbi2d 630 | . . . . . . 7 ⊢ (𝑎 = (card‘(1...𝑛)) → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎) ↔ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛))))) |
| 7 | 6 | exbidv 1921 | . . . . . 6 ⊢ (𝑎 = (card‘(1...𝑛)) → (∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎) ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛))))) |
| 8 | 7 | rspcva 3604 | . . . . 5 ⊢ (((card‘(1...𝑛)) ∈ ω ∧ ∀𝑎 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛)))) |
| 9 | 3, 4, 8 | syl2anr 597 | . . . 4 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛)))) |
| 10 | velpw 4585 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
| 11 | 10 | biimpri 228 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝒫 𝐴) |
| 12 | 11 | a1i 11 | . . . . . 6 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) |
| 13 | hasheni 14371 | . . . . . . . . 9 ⊢ (𝑥 ≈ (card‘(1...𝑛)) → (♯‘𝑥) = (♯‘(card‘(1...𝑛)))) | |
| 14 | 13 | adantl 481 | . . . . . . . 8 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (♯‘𝑥) = (♯‘(card‘(1...𝑛)))) |
| 15 | hashcard 14378 | . . . . . . . . . . 11 ⊢ ((1...𝑛) ∈ Fin → (♯‘(card‘(1...𝑛))) = (♯‘(1...𝑛))) | |
| 16 | 1, 15 | syl 17 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → (♯‘(card‘(1...𝑛))) = (♯‘(1...𝑛))) |
| 17 | nnnn0 12513 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0) | |
| 18 | hashfz1 14369 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛) | |
| 19 | 17, 18 | syl 17 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → (♯‘(1...𝑛)) = 𝑛) |
| 20 | 16, 19 | eqtrd 2771 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → (♯‘(card‘(1...𝑛))) = 𝑛) |
| 21 | 20 | ad2antlr 727 | . . . . . . . 8 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (♯‘(card‘(1...𝑛))) = 𝑛) |
| 22 | 14, 21 | eqtrd 2771 | . . . . . . 7 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (♯‘𝑥) = 𝑛) |
| 23 | 22 | ex 412 | . . . . . 6 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (𝑥 ≈ (card‘(1...𝑛)) → (♯‘𝑥) = 𝑛)) |
| 24 | 12, 23 | anim12d 609 | . . . . 5 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛))) → (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛))) |
| 25 | 24 | eximdv 1917 | . . . 4 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛))) → ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛))) |
| 26 | 9, 25 | mpd 15 | . . 3 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛)) |
| 27 | df-rex 3062 | . . 3 ⊢ (∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛)) | |
| 28 | 26, 27 | sylibr 234 | . 2 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛) |
| 29 | 28 | ralrimiva 3133 | 1 ⊢ (¬ 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 ⊆ wss 3931 𝒫 cpw 4580 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ωcom 7866 ≈ cen 8961 Fincfn 8964 cardccrd 9954 1c1 11135 ℕcn 12245 ℕ0cn0 12506 ...cfz 13529 ♯chash 14353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-hash 14354 |
| This theorem is referenced by: esumcst 34099 sge0rpcpnf 46417 |
| Copyright terms: Public domain | W3C validator |