MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishashinf Structured version   Visualization version   GIF version

Theorem ishashinf 14502
Description: Any set that is not finite contains subsets of arbitrarily large finite cardinality. Cf. isinf 9296. (Contributed by Thierry Arnoux, 5-Jul-2017.)
Assertion
Ref Expression
ishashinf 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛)
Distinct variable group:   𝑥,𝑛,𝐴

Proof of Theorem ishashinf
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fzfid 14014 . . . . . 6 (𝑛 ∈ ℕ → (1...𝑛) ∈ Fin)
2 ficardom 10001 . . . . . 6 ((1...𝑛) ∈ Fin → (card‘(1...𝑛)) ∈ ω)
31, 2syl 17 . . . . 5 (𝑛 ∈ ℕ → (card‘(1...𝑛)) ∈ ω)
4 isinf 9296 . . . . 5 𝐴 ∈ Fin → ∀𝑎 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑎))
5 breq2 5147 . . . . . . . 8 (𝑎 = (card‘(1...𝑛)) → (𝑥𝑎𝑥 ≈ (card‘(1...𝑛))))
65anbi2d 630 . . . . . . 7 (𝑎 = (card‘(1...𝑛)) → ((𝑥𝐴𝑥𝑎) ↔ (𝑥𝐴𝑥 ≈ (card‘(1...𝑛)))))
76exbidv 1921 . . . . . 6 (𝑎 = (card‘(1...𝑛)) → (∃𝑥(𝑥𝐴𝑥𝑎) ↔ ∃𝑥(𝑥𝐴𝑥 ≈ (card‘(1...𝑛)))))
87rspcva 3620 . . . . 5 (((card‘(1...𝑛)) ∈ ω ∧ ∀𝑎 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑎)) → ∃𝑥(𝑥𝐴𝑥 ≈ (card‘(1...𝑛))))
93, 4, 8syl2anr 597 . . . 4 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥(𝑥𝐴𝑥 ≈ (card‘(1...𝑛))))
10 velpw 4605 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1110biimpri 228 . . . . . . 7 (𝑥𝐴𝑥 ∈ 𝒫 𝐴)
1211a1i 11 . . . . . 6 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (𝑥𝐴𝑥 ∈ 𝒫 𝐴))
13 hasheni 14387 . . . . . . . . 9 (𝑥 ≈ (card‘(1...𝑛)) → (♯‘𝑥) = (♯‘(card‘(1...𝑛))))
1413adantl 481 . . . . . . . 8 (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (♯‘𝑥) = (♯‘(card‘(1...𝑛))))
15 hashcard 14394 . . . . . . . . . . 11 ((1...𝑛) ∈ Fin → (♯‘(card‘(1...𝑛))) = (♯‘(1...𝑛)))
161, 15syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (♯‘(card‘(1...𝑛))) = (♯‘(1...𝑛)))
17 nnnn0 12533 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
18 hashfz1 14385 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛)
1917, 18syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (♯‘(1...𝑛)) = 𝑛)
2016, 19eqtrd 2777 . . . . . . . . 9 (𝑛 ∈ ℕ → (♯‘(card‘(1...𝑛))) = 𝑛)
2120ad2antlr 727 . . . . . . . 8 (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (♯‘(card‘(1...𝑛))) = 𝑛)
2214, 21eqtrd 2777 . . . . . . 7 (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (♯‘𝑥) = 𝑛)
2322ex 412 . . . . . 6 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (𝑥 ≈ (card‘(1...𝑛)) → (♯‘𝑥) = 𝑛))
2412, 23anim12d 609 . . . . 5 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ((𝑥𝐴𝑥 ≈ (card‘(1...𝑛))) → (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛)))
2524eximdv 1917 . . . 4 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (∃𝑥(𝑥𝐴𝑥 ≈ (card‘(1...𝑛))) → ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛)))
269, 25mpd 15 . . 3 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛))
27 df-rex 3071 . . 3 (∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛))
2826, 27sylibr 234 . 2 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛)
2928ralrimiva 3146 1 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3061  wrex 3070  wss 3951  𝒫 cpw 4600   class class class wbr 5143  cfv 6561  (class class class)co 7431  ωcom 7887  cen 8982  Fincfn 8985  cardccrd 9975  1c1 11156  cn 12266  0cn0 12526  ...cfz 13547  chash 14369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-hash 14370
This theorem is referenced by:  esumcst  34064  sge0rpcpnf  46436
  Copyright terms: Public domain W3C validator