| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ishashinf | Structured version Visualization version GIF version | ||
| Description: Any set that is not finite contains subsets of arbitrarily large finite cardinality. Cf. isinf 9296. (Contributed by Thierry Arnoux, 5-Jul-2017.) |
| Ref | Expression |
|---|---|
| ishashinf | ⊢ (¬ 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfid 14014 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → (1...𝑛) ∈ Fin) | |
| 2 | ficardom 10001 | . . . . . 6 ⊢ ((1...𝑛) ∈ Fin → (card‘(1...𝑛)) ∈ ω) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (card‘(1...𝑛)) ∈ ω) |
| 4 | isinf 9296 | . . . . 5 ⊢ (¬ 𝐴 ∈ Fin → ∀𝑎 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎)) | |
| 5 | breq2 5147 | . . . . . . . 8 ⊢ (𝑎 = (card‘(1...𝑛)) → (𝑥 ≈ 𝑎 ↔ 𝑥 ≈ (card‘(1...𝑛)))) | |
| 6 | 5 | anbi2d 630 | . . . . . . 7 ⊢ (𝑎 = (card‘(1...𝑛)) → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎) ↔ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛))))) |
| 7 | 6 | exbidv 1921 | . . . . . 6 ⊢ (𝑎 = (card‘(1...𝑛)) → (∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎) ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛))))) |
| 8 | 7 | rspcva 3620 | . . . . 5 ⊢ (((card‘(1...𝑛)) ∈ ω ∧ ∀𝑎 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛)))) |
| 9 | 3, 4, 8 | syl2anr 597 | . . . 4 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛)))) |
| 10 | velpw 4605 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
| 11 | 10 | biimpri 228 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝒫 𝐴) |
| 12 | 11 | a1i 11 | . . . . . 6 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) |
| 13 | hasheni 14387 | . . . . . . . . 9 ⊢ (𝑥 ≈ (card‘(1...𝑛)) → (♯‘𝑥) = (♯‘(card‘(1...𝑛)))) | |
| 14 | 13 | adantl 481 | . . . . . . . 8 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (♯‘𝑥) = (♯‘(card‘(1...𝑛)))) |
| 15 | hashcard 14394 | . . . . . . . . . . 11 ⊢ ((1...𝑛) ∈ Fin → (♯‘(card‘(1...𝑛))) = (♯‘(1...𝑛))) | |
| 16 | 1, 15 | syl 17 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → (♯‘(card‘(1...𝑛))) = (♯‘(1...𝑛))) |
| 17 | nnnn0 12533 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0) | |
| 18 | hashfz1 14385 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛) | |
| 19 | 17, 18 | syl 17 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → (♯‘(1...𝑛)) = 𝑛) |
| 20 | 16, 19 | eqtrd 2777 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → (♯‘(card‘(1...𝑛))) = 𝑛) |
| 21 | 20 | ad2antlr 727 | . . . . . . . 8 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (♯‘(card‘(1...𝑛))) = 𝑛) |
| 22 | 14, 21 | eqtrd 2777 | . . . . . . 7 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (♯‘𝑥) = 𝑛) |
| 23 | 22 | ex 412 | . . . . . 6 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (𝑥 ≈ (card‘(1...𝑛)) → (♯‘𝑥) = 𝑛)) |
| 24 | 12, 23 | anim12d 609 | . . . . 5 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛))) → (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛))) |
| 25 | 24 | eximdv 1917 | . . . 4 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛))) → ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛))) |
| 26 | 9, 25 | mpd 15 | . . 3 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛)) |
| 27 | df-rex 3071 | . . 3 ⊢ (∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛)) | |
| 28 | 26, 27 | sylibr 234 | . 2 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛) |
| 29 | 28 | ralrimiva 3146 | 1 ⊢ (¬ 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 ⊆ wss 3951 𝒫 cpw 4600 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 ωcom 7887 ≈ cen 8982 Fincfn 8985 cardccrd 9975 1c1 11156 ℕcn 12266 ℕ0cn0 12526 ...cfz 13547 ♯chash 14369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-hash 14370 |
| This theorem is referenced by: esumcst 34064 sge0rpcpnf 46436 |
| Copyright terms: Public domain | W3C validator |