| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ishashinf | Structured version Visualization version GIF version | ||
| Description: Any set that is not finite contains subsets of arbitrarily large finite cardinality. Cf. isinf 9149. (Contributed by Thierry Arnoux, 5-Jul-2017.) |
| Ref | Expression |
|---|---|
| ishashinf | ⊢ (¬ 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfid 13877 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → (1...𝑛) ∈ Fin) | |
| 2 | ficardom 9851 | . . . . . 6 ⊢ ((1...𝑛) ∈ Fin → (card‘(1...𝑛)) ∈ ω) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (card‘(1...𝑛)) ∈ ω) |
| 4 | isinf 9149 | . . . . 5 ⊢ (¬ 𝐴 ∈ Fin → ∀𝑎 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎)) | |
| 5 | breq2 5095 | . . . . . . . 8 ⊢ (𝑎 = (card‘(1...𝑛)) → (𝑥 ≈ 𝑎 ↔ 𝑥 ≈ (card‘(1...𝑛)))) | |
| 6 | 5 | anbi2d 630 | . . . . . . 7 ⊢ (𝑎 = (card‘(1...𝑛)) → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎) ↔ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛))))) |
| 7 | 6 | exbidv 1922 | . . . . . 6 ⊢ (𝑎 = (card‘(1...𝑛)) → (∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎) ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛))))) |
| 8 | 7 | rspcva 3575 | . . . . 5 ⊢ (((card‘(1...𝑛)) ∈ ω ∧ ∀𝑎 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛)))) |
| 9 | 3, 4, 8 | syl2anr 597 | . . . 4 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛)))) |
| 10 | velpw 4555 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
| 11 | 10 | biimpri 228 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝒫 𝐴) |
| 12 | 11 | a1i 11 | . . . . . 6 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝒫 𝐴)) |
| 13 | hasheni 14252 | . . . . . . . . 9 ⊢ (𝑥 ≈ (card‘(1...𝑛)) → (♯‘𝑥) = (♯‘(card‘(1...𝑛)))) | |
| 14 | 13 | adantl 481 | . . . . . . . 8 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (♯‘𝑥) = (♯‘(card‘(1...𝑛)))) |
| 15 | hashcard 14259 | . . . . . . . . . . 11 ⊢ ((1...𝑛) ∈ Fin → (♯‘(card‘(1...𝑛))) = (♯‘(1...𝑛))) | |
| 16 | 1, 15 | syl 17 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → (♯‘(card‘(1...𝑛))) = (♯‘(1...𝑛))) |
| 17 | nnnn0 12385 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0) | |
| 18 | hashfz1 14250 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛) | |
| 19 | 17, 18 | syl 17 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → (♯‘(1...𝑛)) = 𝑛) |
| 20 | 16, 19 | eqtrd 2766 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → (♯‘(card‘(1...𝑛))) = 𝑛) |
| 21 | 20 | ad2antlr 727 | . . . . . . . 8 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (♯‘(card‘(1...𝑛))) = 𝑛) |
| 22 | 14, 21 | eqtrd 2766 | . . . . . . 7 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (♯‘𝑥) = 𝑛) |
| 23 | 22 | ex 412 | . . . . . 6 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (𝑥 ≈ (card‘(1...𝑛)) → (♯‘𝑥) = 𝑛)) |
| 24 | 12, 23 | anim12d 609 | . . . . 5 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛))) → (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛))) |
| 25 | 24 | eximdv 1918 | . . . 4 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (card‘(1...𝑛))) → ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛))) |
| 26 | 9, 25 | mpd 15 | . . 3 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛)) |
| 27 | df-rex 3057 | . . 3 ⊢ (∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛)) | |
| 28 | 26, 27 | sylibr 234 | . 2 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛) |
| 29 | 28 | ralrimiva 3124 | 1 ⊢ (¬ 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ⊆ wss 3902 𝒫 cpw 4550 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 ωcom 7796 ≈ cen 8866 Fincfn 8869 cardccrd 9825 1c1 11004 ℕcn 12122 ℕ0cn0 12378 ...cfz 13404 ♯chash 14234 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-hash 14235 |
| This theorem is referenced by: esumcst 34071 sge0rpcpnf 46458 |
| Copyright terms: Public domain | W3C validator |