MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishashinf Structured version   Visualization version   GIF version

Theorem ishashinf 14367
Description: Any set that is not finite contains subsets of arbitrarily large finite cardinality. Cf. isinf 9149. (Contributed by Thierry Arnoux, 5-Jul-2017.)
Assertion
Ref Expression
ishashinf 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛)
Distinct variable group:   𝑥,𝑛,𝐴

Proof of Theorem ishashinf
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13877 . . . . . 6 (𝑛 ∈ ℕ → (1...𝑛) ∈ Fin)
2 ficardom 9851 . . . . . 6 ((1...𝑛) ∈ Fin → (card‘(1...𝑛)) ∈ ω)
31, 2syl 17 . . . . 5 (𝑛 ∈ ℕ → (card‘(1...𝑛)) ∈ ω)
4 isinf 9149 . . . . 5 𝐴 ∈ Fin → ∀𝑎 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑎))
5 breq2 5095 . . . . . . . 8 (𝑎 = (card‘(1...𝑛)) → (𝑥𝑎𝑥 ≈ (card‘(1...𝑛))))
65anbi2d 630 . . . . . . 7 (𝑎 = (card‘(1...𝑛)) → ((𝑥𝐴𝑥𝑎) ↔ (𝑥𝐴𝑥 ≈ (card‘(1...𝑛)))))
76exbidv 1922 . . . . . 6 (𝑎 = (card‘(1...𝑛)) → (∃𝑥(𝑥𝐴𝑥𝑎) ↔ ∃𝑥(𝑥𝐴𝑥 ≈ (card‘(1...𝑛)))))
87rspcva 3575 . . . . 5 (((card‘(1...𝑛)) ∈ ω ∧ ∀𝑎 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑎)) → ∃𝑥(𝑥𝐴𝑥 ≈ (card‘(1...𝑛))))
93, 4, 8syl2anr 597 . . . 4 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥(𝑥𝐴𝑥 ≈ (card‘(1...𝑛))))
10 velpw 4555 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1110biimpri 228 . . . . . . 7 (𝑥𝐴𝑥 ∈ 𝒫 𝐴)
1211a1i 11 . . . . . 6 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (𝑥𝐴𝑥 ∈ 𝒫 𝐴))
13 hasheni 14252 . . . . . . . . 9 (𝑥 ≈ (card‘(1...𝑛)) → (♯‘𝑥) = (♯‘(card‘(1...𝑛))))
1413adantl 481 . . . . . . . 8 (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (♯‘𝑥) = (♯‘(card‘(1...𝑛))))
15 hashcard 14259 . . . . . . . . . . 11 ((1...𝑛) ∈ Fin → (♯‘(card‘(1...𝑛))) = (♯‘(1...𝑛)))
161, 15syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (♯‘(card‘(1...𝑛))) = (♯‘(1...𝑛)))
17 nnnn0 12385 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
18 hashfz1 14250 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛)
1917, 18syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (♯‘(1...𝑛)) = 𝑛)
2016, 19eqtrd 2766 . . . . . . . . 9 (𝑛 ∈ ℕ → (♯‘(card‘(1...𝑛))) = 𝑛)
2120ad2antlr 727 . . . . . . . 8 (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (♯‘(card‘(1...𝑛))) = 𝑛)
2214, 21eqtrd 2766 . . . . . . 7 (((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≈ (card‘(1...𝑛))) → (♯‘𝑥) = 𝑛)
2322ex 412 . . . . . 6 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (𝑥 ≈ (card‘(1...𝑛)) → (♯‘𝑥) = 𝑛))
2412, 23anim12d 609 . . . . 5 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ((𝑥𝐴𝑥 ≈ (card‘(1...𝑛))) → (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛)))
2524eximdv 1918 . . . 4 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → (∃𝑥(𝑥𝐴𝑥 ≈ (card‘(1...𝑛))) → ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛)))
269, 25mpd 15 . . 3 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛))
27 df-rex 3057 . . 3 (∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 𝑛))
2826, 27sylibr 234 . 2 ((¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ) → ∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛)
2928ralrimiva 3124 1 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  wss 3902  𝒫 cpw 4550   class class class wbr 5091  cfv 6481  (class class class)co 7346  ωcom 7796  cen 8866  Fincfn 8869  cardccrd 9825  1c1 11004  cn 12122  0cn0 12378  ...cfz 13404  chash 14234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-hash 14235
This theorem is referenced by:  esumcst  34071  sge0rpcpnf  46458
  Copyright terms: Public domain W3C validator