MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem3 Structured version   Visualization version   GIF version

Theorem lgamgulmlem3 24971
Description: Lemma for lgamgulm 24975. (Contributed by Mario Carneiro, 3-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.n (𝜑𝑁 ∈ ℕ)
lgamgulm.a (𝜑𝐴𝑈)
lgamgulm.l (𝜑 → (2 · 𝑅) ≤ 𝑁)
Assertion
Ref Expression
lgamgulmlem3 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑘,𝑅   𝐴,𝑘,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝑈(𝑥,𝑘)   𝑁(𝑘)

Proof of Theorem lgamgulmlem3
StepHypRef Expression
1 lgamgulm.r . . . . . . . 8 (𝜑𝑅 ∈ ℕ)
2 lgamgulm.u . . . . . . . 8 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
31, 2lgamgulmlem1 24969 . . . . . . 7 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
4 lgamgulm.a . . . . . . 7 (𝜑𝐴𝑈)
53, 4sseldd 3753 . . . . . 6 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
65eldifad 3735 . . . . 5 (𝜑𝐴 ∈ ℂ)
7 lgamgulm.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
87peano2nnd 11237 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℕ)
98nnrpd 12066 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℝ+)
107nnrpd 12066 . . . . . . . 8 (𝜑𝑁 ∈ ℝ+)
119, 10rpdivcld 12085 . . . . . . 7 (𝜑 → ((𝑁 + 1) / 𝑁) ∈ ℝ+)
1211relogcld 24583 . . . . . 6 (𝜑 → (log‘((𝑁 + 1) / 𝑁)) ∈ ℝ)
1312recnd 10268 . . . . 5 (𝜑 → (log‘((𝑁 + 1) / 𝑁)) ∈ ℂ)
146, 13mulcld 10260 . . . 4 (𝜑 → (𝐴 · (log‘((𝑁 + 1) / 𝑁))) ∈ ℂ)
157nncnd 11236 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
167nnne0d 11265 . . . . . . 7 (𝜑𝑁 ≠ 0)
176, 15, 16divcld 11001 . . . . . 6 (𝜑 → (𝐴 / 𝑁) ∈ ℂ)
18 1cnd 10256 . . . . . 6 (𝜑 → 1 ∈ ℂ)
1917, 18addcld 10259 . . . . 5 (𝜑 → ((𝐴 / 𝑁) + 1) ∈ ℂ)
205, 7dmgmdivn0 24968 . . . . 5 (𝜑 → ((𝐴 / 𝑁) + 1) ≠ 0)
2119, 20logcld 24531 . . . 4 (𝜑 → (log‘((𝐴 / 𝑁) + 1)) ∈ ℂ)
2214, 21subcld 10592 . . 3 (𝜑 → ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1))) ∈ ℂ)
2322abscld 14376 . 2 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ∈ ℝ)
2414, 17subcld 10592 . . . 4 (𝜑 → ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁)) ∈ ℂ)
2524abscld 14376 . . 3 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) ∈ ℝ)
2617, 21subcld 10592 . . . 4 (𝜑 → ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) ∈ ℂ)
2726abscld 14376 . . 3 (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ∈ ℝ)
2825, 27readdcld 10269 . 2 (𝜑 → ((abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) + (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))) ∈ ℝ)
291nnred 11235 . . 3 (𝜑𝑅 ∈ ℝ)
30 2re 11290 . . . . . 6 2 ∈ ℝ
3130a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ)
32 1red 10255 . . . . . 6 (𝜑 → 1 ∈ ℝ)
3329, 32readdcld 10269 . . . . 5 (𝜑 → (𝑅 + 1) ∈ ℝ)
3431, 33remulcld 10270 . . . 4 (𝜑 → (2 · (𝑅 + 1)) ∈ ℝ)
357nnsqcld 13229 . . . 4 (𝜑 → (𝑁↑2) ∈ ℕ)
3634, 35nndivred 11269 . . 3 (𝜑 → ((2 · (𝑅 + 1)) / (𝑁↑2)) ∈ ℝ)
3729, 36remulcld 10270 . 2 (𝜑 → (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))) ∈ ℝ)
3814, 21, 17abs3difd 14400 . 2 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ≤ ((abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) + (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))))
397nnrecred 11266 . . . . . 6 (𝜑 → (1 / 𝑁) ∈ ℝ)
408nnrecred 11266 . . . . . 6 (𝜑 → (1 / (𝑁 + 1)) ∈ ℝ)
4139, 40resubcld 10658 . . . . 5 (𝜑 → ((1 / 𝑁) − (1 / (𝑁 + 1))) ∈ ℝ)
4229, 41remulcld 10270 . . . 4 (𝜑 → (𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) ∈ ℝ)
4331, 29remulcld 10270 . . . . . . . . 9 (𝜑 → (2 · 𝑅) ∈ ℝ)
447nnred 11235 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
451nnrpd 12066 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℝ+)
4629, 45ltaddrpd 12101 . . . . . . . . . 10 (𝜑𝑅 < (𝑅 + 𝑅))
471nncnd 11236 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℂ)
48472timesd 11475 . . . . . . . . . 10 (𝜑 → (2 · 𝑅) = (𝑅 + 𝑅))
4946, 48breqtrrd 4814 . . . . . . . . 9 (𝜑𝑅 < (2 · 𝑅))
50 lgamgulm.l . . . . . . . . 9 (𝜑 → (2 · 𝑅) ≤ 𝑁)
5129, 43, 44, 49, 50ltletrd 10397 . . . . . . . 8 (𝜑𝑅 < 𝑁)
52 difrp 12064 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑅 < 𝑁 ↔ (𝑁𝑅) ∈ ℝ+))
5329, 44, 52syl2anc 573 . . . . . . . 8 (𝜑 → (𝑅 < 𝑁 ↔ (𝑁𝑅) ∈ ℝ+))
5451, 53mpbid 222 . . . . . . 7 (𝜑 → (𝑁𝑅) ∈ ℝ+)
5554rprecred 12079 . . . . . 6 (𝜑 → (1 / (𝑁𝑅)) ∈ ℝ)
5655, 39resubcld 10658 . . . . 5 (𝜑 → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℝ)
5729, 56remulcld 10270 . . . 4 (𝜑 → (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ∈ ℝ)
5842, 57readdcld 10269 . . 3 (𝜑 → ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))) ∈ ℝ)
596, 15, 16divrecd 11004 . . . . . . . . 9 (𝜑 → (𝐴 / 𝑁) = (𝐴 · (1 / 𝑁)))
6059oveq2d 6807 . . . . . . . 8 (𝜑 → ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁)) = ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 · (1 / 𝑁))))
6139recnd 10268 . . . . . . . . 9 (𝜑 → (1 / 𝑁) ∈ ℂ)
626, 13, 61subdid 10686 . . . . . . . 8 (𝜑 → (𝐴 · ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))) = ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 · (1 / 𝑁))))
6360, 62eqtr4d 2808 . . . . . . 7 (𝜑 → ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁)) = (𝐴 · ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))))
6463fveq2d 6334 . . . . . 6 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) = (abs‘(𝐴 · ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))))
6513, 61subcld 10592 . . . . . . 7 (𝜑 → ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)) ∈ ℂ)
666, 65absmuld 14394 . . . . . 6 (𝜑 → (abs‘(𝐴 · ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))) = ((abs‘𝐴) · (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))))
6764, 66eqtrd 2805 . . . . 5 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) = ((abs‘𝐴) · (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))))
686abscld 14376 . . . . . 6 (𝜑 → (abs‘𝐴) ∈ ℝ)
6965abscld 14376 . . . . . 6 (𝜑 → (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))) ∈ ℝ)
706absge0d 14384 . . . . . 6 (𝜑 → 0 ≤ (abs‘𝐴))
7165absge0d 14384 . . . . . 6 (𝜑 → 0 ≤ (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))))
72 fveq2 6330 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (abs‘𝑥) = (abs‘𝐴))
7372breq1d 4796 . . . . . . . . . . 11 (𝑥 = 𝐴 → ((abs‘𝑥) ≤ 𝑅 ↔ (abs‘𝐴) ≤ 𝑅))
74 fvoveq1 6814 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝐴 + 𝑘)))
7574breq2d 4798 . . . . . . . . . . . 12 (𝑥 = 𝐴 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7675ralbidv 3135 . . . . . . . . . . 11 (𝑥 = 𝐴 → (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7773, 76anbi12d 616 . . . . . . . . . 10 (𝑥 = 𝐴 → (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘)))))
7877, 2elrab2 3518 . . . . . . . . 9 (𝐴𝑈 ↔ (𝐴 ∈ ℂ ∧ ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘)))))
7978simprbi 484 . . . . . . . 8 (𝐴𝑈 → ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
804, 79syl 17 . . . . . . 7 (𝜑 → ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
8180simpld 482 . . . . . 6 (𝜑 → (abs‘𝐴) ≤ 𝑅)
829, 10relogdivd 24586 . . . . . . . . 9 (𝜑 → (log‘((𝑁 + 1) / 𝑁)) = ((log‘(𝑁 + 1)) − (log‘𝑁)))
83 logdifbnd 24934 . . . . . . . . . 10 (𝑁 ∈ ℝ+ → ((log‘(𝑁 + 1)) − (log‘𝑁)) ≤ (1 / 𝑁))
8410, 83syl 17 . . . . . . . . 9 (𝜑 → ((log‘(𝑁 + 1)) − (log‘𝑁)) ≤ (1 / 𝑁))
8582, 84eqbrtrd 4808 . . . . . . . 8 (𝜑 → (log‘((𝑁 + 1) / 𝑁)) ≤ (1 / 𝑁))
8612, 39, 85abssuble0d 14372 . . . . . . 7 (𝜑 → (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))) = ((1 / 𝑁) − (log‘((𝑁 + 1) / 𝑁))))
87 logdiflbnd 24935 . . . . . . . . . 10 (𝑁 ∈ ℝ+ → (1 / (𝑁 + 1)) ≤ ((log‘(𝑁 + 1)) − (log‘𝑁)))
8810, 87syl 17 . . . . . . . . 9 (𝜑 → (1 / (𝑁 + 1)) ≤ ((log‘(𝑁 + 1)) − (log‘𝑁)))
8988, 82breqtrrd 4814 . . . . . . . 8 (𝜑 → (1 / (𝑁 + 1)) ≤ (log‘((𝑁 + 1) / 𝑁)))
9040, 12, 39, 89lesub2dd 10844 . . . . . . 7 (𝜑 → ((1 / 𝑁) − (log‘((𝑁 + 1) / 𝑁))) ≤ ((1 / 𝑁) − (1 / (𝑁 + 1))))
9186, 90eqbrtrd 4808 . . . . . 6 (𝜑 → (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))) ≤ ((1 / 𝑁) − (1 / (𝑁 + 1))))
9268, 29, 69, 41, 70, 71, 81, 91lemul12ad 11166 . . . . 5 (𝜑 → ((abs‘𝐴) · (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))) ≤ (𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))))
9367, 92eqbrtrd 4808 . . . 4 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) ≤ (𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))))
941, 2, 7, 4, 50lgamgulmlem2 24970 . . . 4 (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
9525, 27, 42, 57, 93, 94le2addd 10846 . . 3 (𝜑 → ((abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) + (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))) ≤ ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
9615, 47subcld 10592 . . . . . . . 8 (𝜑 → (𝑁𝑅) ∈ ℂ)
9715, 18addcld 10259 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℂ)
9829, 51gtned 10372 . . . . . . . . 9 (𝜑𝑁𝑅)
9915, 47, 98subne0d 10601 . . . . . . . 8 (𝜑 → (𝑁𝑅) ≠ 0)
1008nnne0d 11265 . . . . . . . 8 (𝜑 → (𝑁 + 1) ≠ 0)
10196, 97, 99, 100subrecd 11056 . . . . . . 7 (𝜑 → ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1))) = (((𝑁 + 1) − (𝑁𝑅)) / ((𝑁𝑅) · (𝑁 + 1))))
10215, 18, 47pnncand 10631 . . . . . . . . 9 (𝜑 → ((𝑁 + 1) − (𝑁𝑅)) = (1 + 𝑅))
10318, 47addcomd 10438 . . . . . . . . 9 (𝜑 → (1 + 𝑅) = (𝑅 + 1))
104102, 103eqtrd 2805 . . . . . . . 8 (𝜑 → ((𝑁 + 1) − (𝑁𝑅)) = (𝑅 + 1))
105104oveq1d 6806 . . . . . . 7 (𝜑 → (((𝑁 + 1) − (𝑁𝑅)) / ((𝑁𝑅) · (𝑁 + 1))) = ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1))))
106101, 105eqtr2d 2806 . . . . . 6 (𝜑 → ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1))) = ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1))))
107106oveq2d 6807 . . . . 5 (𝜑 → (𝑅 · ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1)))) = (𝑅 · ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1)))))
10897, 100reccld 10994 . . . . . . . 8 (𝜑 → (1 / (𝑁 + 1)) ∈ ℂ)
10996, 99reccld 10994 . . . . . . . 8 (𝜑 → (1 / (𝑁𝑅)) ∈ ℂ)
11061, 108, 109npncan3d 10628 . . . . . . 7 (𝜑 → (((1 / 𝑁) − (1 / (𝑁 + 1))) + ((1 / (𝑁𝑅)) − (1 / 𝑁))) = ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1))))
111110eqcomd 2777 . . . . . 6 (𝜑 → ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1))) = (((1 / 𝑁) − (1 / (𝑁 + 1))) + ((1 / (𝑁𝑅)) − (1 / 𝑁))))
112111oveq2d 6807 . . . . 5 (𝜑 → (𝑅 · ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1)))) = (𝑅 · (((1 / 𝑁) − (1 / (𝑁 + 1))) + ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
11341recnd 10268 . . . . . 6 (𝜑 → ((1 / 𝑁) − (1 / (𝑁 + 1))) ∈ ℂ)
11456recnd 10268 . . . . . 6 (𝜑 → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℂ)
11547, 113, 114adddid 10264 . . . . 5 (𝜑 → (𝑅 · (((1 / 𝑁) − (1 / (𝑁 + 1))) + ((1 / (𝑁𝑅)) − (1 / 𝑁)))) = ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
116107, 112, 1153eqtrd 2809 . . . 4 (𝜑 → (𝑅 · ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1)))) = ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
11754, 9rpmulcld 12084 . . . . . 6 (𝜑 → ((𝑁𝑅) · (𝑁 + 1)) ∈ ℝ+)
11833, 117rerpdivcld 12099 . . . . 5 (𝜑 → ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1))) ∈ ℝ)
11945rpge0d 12072 . . . . 5 (𝜑 → 0 ≤ 𝑅)
120 2z 11609 . . . . . . . . . 10 2 ∈ ℤ
121120a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℤ)
12210, 121rpexpcld 13232 . . . . . . . 8 (𝜑 → (𝑁↑2) ∈ ℝ+)
123122rphalfcld 12080 . . . . . . 7 (𝜑 → ((𝑁↑2) / 2) ∈ ℝ+)
124 0le1 10751 . . . . . . . . 9 0 ≤ 1
125124a1i 11 . . . . . . . 8 (𝜑 → 0 ≤ 1)
12629, 32, 119, 125addge0d 10803 . . . . . . 7 (𝜑 → 0 ≤ (𝑅 + 1))
12715sqvald 13205 . . . . . . . . . 10 (𝜑 → (𝑁↑2) = (𝑁 · 𝑁))
128127oveq1d 6806 . . . . . . . . 9 (𝜑 → ((𝑁↑2) / 2) = ((𝑁 · 𝑁) / 2))
12931recnd 10268 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
130 2ne0 11313 . . . . . . . . . . 11 2 ≠ 0
131130a1i 11 . . . . . . . . . 10 (𝜑 → 2 ≠ 0)
13215, 15, 129, 131div23d 11038 . . . . . . . . 9 (𝜑 → ((𝑁 · 𝑁) / 2) = ((𝑁 / 2) · 𝑁))
133128, 132eqtrd 2805 . . . . . . . 8 (𝜑 → ((𝑁↑2) / 2) = ((𝑁 / 2) · 𝑁))
13444rehalfcld 11479 . . . . . . . . 9 (𝜑 → (𝑁 / 2) ∈ ℝ)
13544, 29resubcld 10658 . . . . . . . . 9 (𝜑 → (𝑁𝑅) ∈ ℝ)
13644, 32readdcld 10269 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℝ)
137 2rp 12033 . . . . . . . . . . 11 2 ∈ ℝ+
138137a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ+)
13910rpge0d 12072 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑁)
14044, 138, 139divge0d 12108 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑁 / 2))
14129, 44, 138lemuldiv2d 12118 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑅) ≤ 𝑁𝑅 ≤ (𝑁 / 2)))
14250, 141mpbid 222 . . . . . . . . . . 11 (𝜑𝑅 ≤ (𝑁 / 2))
143152halvesd 11478 . . . . . . . . . . . 12 (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) = 𝑁)
144134recnd 10268 . . . . . . . . . . . . 13 (𝜑 → (𝑁 / 2) ∈ ℂ)
14515, 144, 144subaddd 10610 . . . . . . . . . . . 12 (𝜑 → ((𝑁 − (𝑁 / 2)) = (𝑁 / 2) ↔ ((𝑁 / 2) + (𝑁 / 2)) = 𝑁))
146143, 145mpbird 247 . . . . . . . . . . 11 (𝜑 → (𝑁 − (𝑁 / 2)) = (𝑁 / 2))
147142, 146breqtrrd 4814 . . . . . . . . . 10 (𝜑𝑅 ≤ (𝑁 − (𝑁 / 2)))
14829, 44, 134, 147lesubd 10831 . . . . . . . . 9 (𝜑 → (𝑁 / 2) ≤ (𝑁𝑅))
14944lep1d 11155 . . . . . . . . 9 (𝜑𝑁 ≤ (𝑁 + 1))
150134, 135, 44, 136, 140, 139, 148, 149lemul12ad 11166 . . . . . . . 8 (𝜑 → ((𝑁 / 2) · 𝑁) ≤ ((𝑁𝑅) · (𝑁 + 1)))
151133, 150eqbrtrd 4808 . . . . . . 7 (𝜑 → ((𝑁↑2) / 2) ≤ ((𝑁𝑅) · (𝑁 + 1)))
152123, 117, 33, 126, 151lediv2ad 12090 . . . . . 6 (𝜑 → ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1))) ≤ ((𝑅 + 1) / ((𝑁↑2) / 2)))
1531peano2nnd 11237 . . . . . . . . 9 (𝜑 → (𝑅 + 1) ∈ ℕ)
154153nncnd 11236 . . . . . . . 8 (𝜑 → (𝑅 + 1) ∈ ℂ)
15535nncnd 11236 . . . . . . . 8 (𝜑 → (𝑁↑2) ∈ ℂ)
15635nnne0d 11265 . . . . . . . 8 (𝜑 → (𝑁↑2) ≠ 0)
157154, 155, 129, 156, 131divdiv2d 11033 . . . . . . 7 (𝜑 → ((𝑅 + 1) / ((𝑁↑2) / 2)) = (((𝑅 + 1) · 2) / (𝑁↑2)))
158154, 129mulcomd 10261 . . . . . . . 8 (𝜑 → ((𝑅 + 1) · 2) = (2 · (𝑅 + 1)))
159158oveq1d 6806 . . . . . . 7 (𝜑 → (((𝑅 + 1) · 2) / (𝑁↑2)) = ((2 · (𝑅 + 1)) / (𝑁↑2)))
160157, 159eqtr2d 2806 . . . . . 6 (𝜑 → ((2 · (𝑅 + 1)) / (𝑁↑2)) = ((𝑅 + 1) / ((𝑁↑2) / 2)))
161152, 160breqtrrd 4814 . . . . 5 (𝜑 → ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1))) ≤ ((2 · (𝑅 + 1)) / (𝑁↑2)))
162118, 36, 29, 119, 161lemul2ad 11164 . . . 4 (𝜑 → (𝑅 · ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))))
163116, 162eqbrtrrd 4810 . . 3 (𝜑 → ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))))
16428, 58, 37, 95, 163letrd 10394 . 2 (𝜑 → ((abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) + (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))))
16523, 28, 37, 38, 164letrd 10394 1 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943  wral 3061  {crab 3065  cdif 3720   class class class wbr 4786  cfv 6029  (class class class)co 6791  cc 10134  cr 10135  0cc0 10136  1c1 10137   + caddc 10139   · cmul 10141   < clt 10274  cle 10275  cmin 10466   / cdiv 10884  cn 11220  2c2 11270  0cn0 11492  cz 11577  +crp 12028  cexp 13060  abscabs 14175  logclog 24515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214  ax-addf 10215  ax-mulf 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-of 7042  df-om 7211  df-1st 7313  df-2nd 7314  df-supp 7445  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-oadd 7715  df-er 7894  df-map 8009  df-pm 8010  df-ixp 8061  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-fsupp 8430  df-fi 8471  df-sup 8502  df-inf 8503  df-oi 8569  df-card 8963  df-cda 9190  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-4 11281  df-5 11282  df-6 11283  df-7 11284  df-8 11285  df-9 11286  df-n0 11493  df-z 11578  df-dec 11694  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12144  df-xadd 12145  df-xmul 12146  df-ioo 12377  df-ioc 12378  df-ico 12379  df-icc 12380  df-fz 12527  df-fzo 12667  df-fl 12794  df-mod 12870  df-seq 13002  df-exp 13061  df-fac 13258  df-bc 13287  df-hash 13315  df-shft 14008  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-limsup 14403  df-clim 14420  df-rlim 14421  df-sum 14618  df-ef 14997  df-sin 14999  df-cos 15000  df-tan 15001  df-pi 15002  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16155  df-mulr 16156  df-starv 16157  df-sca 16158  df-vsca 16159  df-ip 16160  df-tset 16161  df-ple 16162  df-ds 16165  df-unif 16166  df-hom 16167  df-cco 16168  df-rest 16284  df-topn 16285  df-0g 16303  df-gsum 16304  df-topgen 16305  df-pt 16306  df-prds 16309  df-xrs 16363  df-qtop 16368  df-imas 16369  df-xps 16371  df-mre 16447  df-mrc 16448  df-acs 16450  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19946  df-xmet 19947  df-met 19948  df-bl 19949  df-mopn 19950  df-fbas 19951  df-fg 19952  df-cnfld 19955  df-top 20912  df-topon 20929  df-topsp 20951  df-bases 20964  df-cld 21037  df-ntr 21038  df-cls 21039  df-nei 21116  df-lp 21154  df-perf 21155  df-cn 21245  df-cnp 21246  df-haus 21333  df-cmp 21404  df-tx 21579  df-hmeo 21772  df-fil 21863  df-fm 21955  df-flim 21956  df-flf 21957  df-xms 22338  df-ms 22339  df-tms 22340  df-cncf 22894  df-limc 23843  df-dv 23844  df-log 24517
This theorem is referenced by:  lgamgulmlem5  24973
  Copyright terms: Public domain W3C validator