MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem3 Structured version   Visualization version   GIF version

Theorem lgamgulmlem3 26971
Description: Lemma for lgamgulm 26975. (Contributed by Mario Carneiro, 3-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.n (𝜑𝑁 ∈ ℕ)
lgamgulm.a (𝜑𝐴𝑈)
lgamgulm.l (𝜑 → (2 · 𝑅) ≤ 𝑁)
Assertion
Ref Expression
lgamgulmlem3 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑘,𝑅   𝐴,𝑘,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝑈(𝑥,𝑘)   𝑁(𝑘)

Proof of Theorem lgamgulmlem3
StepHypRef Expression
1 lgamgulm.r . . . . . . . 8 (𝜑𝑅 ∈ ℕ)
2 lgamgulm.u . . . . . . . 8 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
31, 2lgamgulmlem1 26969 . . . . . . 7 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
4 lgamgulm.a . . . . . . 7 (𝜑𝐴𝑈)
53, 4sseldd 3931 . . . . . 6 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
65eldifad 3910 . . . . 5 (𝜑𝐴 ∈ ℂ)
7 lgamgulm.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
87peano2nnd 12151 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℕ)
98nnrpd 12936 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℝ+)
107nnrpd 12936 . . . . . . . 8 (𝜑𝑁 ∈ ℝ+)
119, 10rpdivcld 12955 . . . . . . 7 (𝜑 → ((𝑁 + 1) / 𝑁) ∈ ℝ+)
1211relogcld 26562 . . . . . 6 (𝜑 → (log‘((𝑁 + 1) / 𝑁)) ∈ ℝ)
1312recnd 11149 . . . . 5 (𝜑 → (log‘((𝑁 + 1) / 𝑁)) ∈ ℂ)
146, 13mulcld 11141 . . . 4 (𝜑 → (𝐴 · (log‘((𝑁 + 1) / 𝑁))) ∈ ℂ)
157nncnd 12150 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
167nnne0d 12184 . . . . . . 7 (𝜑𝑁 ≠ 0)
176, 15, 16divcld 11906 . . . . . 6 (𝜑 → (𝐴 / 𝑁) ∈ ℂ)
18 1cnd 11116 . . . . . 6 (𝜑 → 1 ∈ ℂ)
1917, 18addcld 11140 . . . . 5 (𝜑 → ((𝐴 / 𝑁) + 1) ∈ ℂ)
205, 7dmgmdivn0 26968 . . . . 5 (𝜑 → ((𝐴 / 𝑁) + 1) ≠ 0)
2119, 20logcld 26509 . . . 4 (𝜑 → (log‘((𝐴 / 𝑁) + 1)) ∈ ℂ)
2214, 21subcld 11481 . . 3 (𝜑 → ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1))) ∈ ℂ)
2322abscld 15350 . 2 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ∈ ℝ)
2414, 17subcld 11481 . . . 4 (𝜑 → ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁)) ∈ ℂ)
2524abscld 15350 . . 3 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) ∈ ℝ)
2617, 21subcld 11481 . . . 4 (𝜑 → ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) ∈ ℂ)
2726abscld 15350 . . 3 (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ∈ ℝ)
2825, 27readdcld 11150 . 2 (𝜑 → ((abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) + (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))) ∈ ℝ)
291nnred 12149 . . 3 (𝜑𝑅 ∈ ℝ)
30 2re 12208 . . . . . 6 2 ∈ ℝ
3130a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ)
32 1red 11122 . . . . . 6 (𝜑 → 1 ∈ ℝ)
3329, 32readdcld 11150 . . . . 5 (𝜑 → (𝑅 + 1) ∈ ℝ)
3431, 33remulcld 11151 . . . 4 (𝜑 → (2 · (𝑅 + 1)) ∈ ℝ)
357nnsqcld 14155 . . . 4 (𝜑 → (𝑁↑2) ∈ ℕ)
3634, 35nndivred 12188 . . 3 (𝜑 → ((2 · (𝑅 + 1)) / (𝑁↑2)) ∈ ℝ)
3729, 36remulcld 11151 . 2 (𝜑 → (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))) ∈ ℝ)
3814, 21, 17abs3difd 15374 . 2 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ≤ ((abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) + (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))))
397nnrecred 12185 . . . . . 6 (𝜑 → (1 / 𝑁) ∈ ℝ)
408nnrecred 12185 . . . . . 6 (𝜑 → (1 / (𝑁 + 1)) ∈ ℝ)
4139, 40resubcld 11554 . . . . 5 (𝜑 → ((1 / 𝑁) − (1 / (𝑁 + 1))) ∈ ℝ)
4229, 41remulcld 11151 . . . 4 (𝜑 → (𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) ∈ ℝ)
4331, 29remulcld 11151 . . . . . . . . 9 (𝜑 → (2 · 𝑅) ∈ ℝ)
447nnred 12149 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
451nnrpd 12936 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℝ+)
4629, 45ltaddrpd 12971 . . . . . . . . . 10 (𝜑𝑅 < (𝑅 + 𝑅))
471nncnd 12150 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℂ)
48472timesd 12373 . . . . . . . . . 10 (𝜑 → (2 · 𝑅) = (𝑅 + 𝑅))
4946, 48breqtrrd 5123 . . . . . . . . 9 (𝜑𝑅 < (2 · 𝑅))
50 lgamgulm.l . . . . . . . . 9 (𝜑 → (2 · 𝑅) ≤ 𝑁)
5129, 43, 44, 49, 50ltletrd 11282 . . . . . . . 8 (𝜑𝑅 < 𝑁)
52 difrp 12934 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑅 < 𝑁 ↔ (𝑁𝑅) ∈ ℝ+))
5329, 44, 52syl2anc 584 . . . . . . . 8 (𝜑 → (𝑅 < 𝑁 ↔ (𝑁𝑅) ∈ ℝ+))
5451, 53mpbid 232 . . . . . . 7 (𝜑 → (𝑁𝑅) ∈ ℝ+)
5554rprecred 12949 . . . . . 6 (𝜑 → (1 / (𝑁𝑅)) ∈ ℝ)
5655, 39resubcld 11554 . . . . 5 (𝜑 → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℝ)
5729, 56remulcld 11151 . . . 4 (𝜑 → (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ∈ ℝ)
5842, 57readdcld 11150 . . 3 (𝜑 → ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))) ∈ ℝ)
596, 15, 16divrecd 11909 . . . . . . . . 9 (𝜑 → (𝐴 / 𝑁) = (𝐴 · (1 / 𝑁)))
6059oveq2d 7370 . . . . . . . 8 (𝜑 → ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁)) = ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 · (1 / 𝑁))))
6139recnd 11149 . . . . . . . . 9 (𝜑 → (1 / 𝑁) ∈ ℂ)
626, 13, 61subdid 11582 . . . . . . . 8 (𝜑 → (𝐴 · ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))) = ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 · (1 / 𝑁))))
6360, 62eqtr4d 2771 . . . . . . 7 (𝜑 → ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁)) = (𝐴 · ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))))
6463fveq2d 6834 . . . . . 6 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) = (abs‘(𝐴 · ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))))
6513, 61subcld 11481 . . . . . . 7 (𝜑 → ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)) ∈ ℂ)
666, 65absmuld 15368 . . . . . 6 (𝜑 → (abs‘(𝐴 · ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))) = ((abs‘𝐴) · (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))))
6764, 66eqtrd 2768 . . . . 5 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) = ((abs‘𝐴) · (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))))
686abscld 15350 . . . . . 6 (𝜑 → (abs‘𝐴) ∈ ℝ)
6965abscld 15350 . . . . . 6 (𝜑 → (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))) ∈ ℝ)
706absge0d 15358 . . . . . 6 (𝜑 → 0 ≤ (abs‘𝐴))
7165absge0d 15358 . . . . . 6 (𝜑 → 0 ≤ (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))))
72 fveq2 6830 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (abs‘𝑥) = (abs‘𝐴))
7372breq1d 5105 . . . . . . . . . . 11 (𝑥 = 𝐴 → ((abs‘𝑥) ≤ 𝑅 ↔ (abs‘𝐴) ≤ 𝑅))
74 fvoveq1 7377 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝐴 + 𝑘)))
7574breq2d 5107 . . . . . . . . . . . 12 (𝑥 = 𝐴 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7675ralbidv 3156 . . . . . . . . . . 11 (𝑥 = 𝐴 → (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7773, 76anbi12d 632 . . . . . . . . . 10 (𝑥 = 𝐴 → (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘)))))
7877, 2elrab2 3646 . . . . . . . . 9 (𝐴𝑈 ↔ (𝐴 ∈ ℂ ∧ ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘)))))
7978simprbi 496 . . . . . . . 8 (𝐴𝑈 → ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
804, 79syl 17 . . . . . . 7 (𝜑 → ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
8180simpld 494 . . . . . 6 (𝜑 → (abs‘𝐴) ≤ 𝑅)
829, 10relogdivd 26565 . . . . . . . . 9 (𝜑 → (log‘((𝑁 + 1) / 𝑁)) = ((log‘(𝑁 + 1)) − (log‘𝑁)))
83 logdifbnd 26934 . . . . . . . . . 10 (𝑁 ∈ ℝ+ → ((log‘(𝑁 + 1)) − (log‘𝑁)) ≤ (1 / 𝑁))
8410, 83syl 17 . . . . . . . . 9 (𝜑 → ((log‘(𝑁 + 1)) − (log‘𝑁)) ≤ (1 / 𝑁))
8582, 84eqbrtrd 5117 . . . . . . . 8 (𝜑 → (log‘((𝑁 + 1) / 𝑁)) ≤ (1 / 𝑁))
8612, 39, 85abssuble0d 15346 . . . . . . 7 (𝜑 → (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))) = ((1 / 𝑁) − (log‘((𝑁 + 1) / 𝑁))))
87 logdiflbnd 26935 . . . . . . . . . 10 (𝑁 ∈ ℝ+ → (1 / (𝑁 + 1)) ≤ ((log‘(𝑁 + 1)) − (log‘𝑁)))
8810, 87syl 17 . . . . . . . . 9 (𝜑 → (1 / (𝑁 + 1)) ≤ ((log‘(𝑁 + 1)) − (log‘𝑁)))
8988, 82breqtrrd 5123 . . . . . . . 8 (𝜑 → (1 / (𝑁 + 1)) ≤ (log‘((𝑁 + 1) / 𝑁)))
9040, 12, 39, 89lesub2dd 11743 . . . . . . 7 (𝜑 → ((1 / 𝑁) − (log‘((𝑁 + 1) / 𝑁))) ≤ ((1 / 𝑁) − (1 / (𝑁 + 1))))
9186, 90eqbrtrd 5117 . . . . . 6 (𝜑 → (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))) ≤ ((1 / 𝑁) − (1 / (𝑁 + 1))))
9268, 29, 69, 41, 70, 71, 81, 91lemul12ad 12073 . . . . 5 (𝜑 → ((abs‘𝐴) · (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))) ≤ (𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))))
9367, 92eqbrtrd 5117 . . . 4 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) ≤ (𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))))
941, 2, 7, 4, 50lgamgulmlem2 26970 . . . 4 (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
9525, 27, 42, 57, 93, 94le2addd 11745 . . 3 (𝜑 → ((abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) + (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))) ≤ ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
9615, 47subcld 11481 . . . . . . . 8 (𝜑 → (𝑁𝑅) ∈ ℂ)
9715, 18addcld 11140 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℂ)
9829, 51gtned 11257 . . . . . . . . 9 (𝜑𝑁𝑅)
9915, 47, 98subne0d 11490 . . . . . . . 8 (𝜑 → (𝑁𝑅) ≠ 0)
1008nnne0d 12184 . . . . . . . 8 (𝜑 → (𝑁 + 1) ≠ 0)
10196, 97, 99, 100subrecd 11959 . . . . . . 7 (𝜑 → ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1))) = (((𝑁 + 1) − (𝑁𝑅)) / ((𝑁𝑅) · (𝑁 + 1))))
10215, 18, 47pnncand 11520 . . . . . . . . 9 (𝜑 → ((𝑁 + 1) − (𝑁𝑅)) = (1 + 𝑅))
10318, 47, 102comraddd 11336 . . . . . . . 8 (𝜑 → ((𝑁 + 1) − (𝑁𝑅)) = (𝑅 + 1))
104103oveq1d 7369 . . . . . . 7 (𝜑 → (((𝑁 + 1) − (𝑁𝑅)) / ((𝑁𝑅) · (𝑁 + 1))) = ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1))))
105101, 104eqtr2d 2769 . . . . . 6 (𝜑 → ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1))) = ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1))))
106105oveq2d 7370 . . . . 5 (𝜑 → (𝑅 · ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1)))) = (𝑅 · ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1)))))
10797, 100reccld 11899 . . . . . . . 8 (𝜑 → (1 / (𝑁 + 1)) ∈ ℂ)
10896, 99reccld 11899 . . . . . . . 8 (𝜑 → (1 / (𝑁𝑅)) ∈ ℂ)
10961, 107, 108npncan3d 11517 . . . . . . 7 (𝜑 → (((1 / 𝑁) − (1 / (𝑁 + 1))) + ((1 / (𝑁𝑅)) − (1 / 𝑁))) = ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1))))
110109eqcomd 2739 . . . . . 6 (𝜑 → ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1))) = (((1 / 𝑁) − (1 / (𝑁 + 1))) + ((1 / (𝑁𝑅)) − (1 / 𝑁))))
111110oveq2d 7370 . . . . 5 (𝜑 → (𝑅 · ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1)))) = (𝑅 · (((1 / 𝑁) − (1 / (𝑁 + 1))) + ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
11241recnd 11149 . . . . . 6 (𝜑 → ((1 / 𝑁) − (1 / (𝑁 + 1))) ∈ ℂ)
11356recnd 11149 . . . . . 6 (𝜑 → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℂ)
11447, 112, 113adddid 11145 . . . . 5 (𝜑 → (𝑅 · (((1 / 𝑁) − (1 / (𝑁 + 1))) + ((1 / (𝑁𝑅)) − (1 / 𝑁)))) = ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
115106, 111, 1143eqtrd 2772 . . . 4 (𝜑 → (𝑅 · ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1)))) = ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
11654, 9rpmulcld 12954 . . . . . 6 (𝜑 → ((𝑁𝑅) · (𝑁 + 1)) ∈ ℝ+)
11733, 116rerpdivcld 12969 . . . . 5 (𝜑 → ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1))) ∈ ℝ)
11845rpge0d 12942 . . . . 5 (𝜑 → 0 ≤ 𝑅)
119 2z 12512 . . . . . . . . . 10 2 ∈ ℤ
120119a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℤ)
12110, 120rpexpcld 14158 . . . . . . . 8 (𝜑 → (𝑁↑2) ∈ ℝ+)
122121rphalfcld 12950 . . . . . . 7 (𝜑 → ((𝑁↑2) / 2) ∈ ℝ+)
123 0le1 11649 . . . . . . . . 9 0 ≤ 1
124123a1i 11 . . . . . . . 8 (𝜑 → 0 ≤ 1)
12529, 32, 118, 124addge0d 11702 . . . . . . 7 (𝜑 → 0 ≤ (𝑅 + 1))
12615sqvald 14054 . . . . . . . . . 10 (𝜑 → (𝑁↑2) = (𝑁 · 𝑁))
127126oveq1d 7369 . . . . . . . . 9 (𝜑 → ((𝑁↑2) / 2) = ((𝑁 · 𝑁) / 2))
12831recnd 11149 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
129 2ne0 12238 . . . . . . . . . . 11 2 ≠ 0
130129a1i 11 . . . . . . . . . 10 (𝜑 → 2 ≠ 0)
13115, 15, 128, 130div23d 11943 . . . . . . . . 9 (𝜑 → ((𝑁 · 𝑁) / 2) = ((𝑁 / 2) · 𝑁))
132127, 131eqtrd 2768 . . . . . . . 8 (𝜑 → ((𝑁↑2) / 2) = ((𝑁 / 2) · 𝑁))
13344rehalfcld 12377 . . . . . . . . 9 (𝜑 → (𝑁 / 2) ∈ ℝ)
13444, 29resubcld 11554 . . . . . . . . 9 (𝜑 → (𝑁𝑅) ∈ ℝ)
13544, 32readdcld 11150 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℝ)
136 2rp 12899 . . . . . . . . . . 11 2 ∈ ℝ+
137136a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ+)
13810rpge0d 12942 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑁)
13944, 137, 138divge0d 12978 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑁 / 2))
14029, 44, 137lemuldiv2d 12988 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑅) ≤ 𝑁𝑅 ≤ (𝑁 / 2)))
14150, 140mpbid 232 . . . . . . . . . . 11 (𝜑𝑅 ≤ (𝑁 / 2))
142152halvesd 12376 . . . . . . . . . . . 12 (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) = 𝑁)
143133recnd 11149 . . . . . . . . . . . . 13 (𝜑 → (𝑁 / 2) ∈ ℂ)
14415, 143, 143subaddd 11499 . . . . . . . . . . . 12 (𝜑 → ((𝑁 − (𝑁 / 2)) = (𝑁 / 2) ↔ ((𝑁 / 2) + (𝑁 / 2)) = 𝑁))
145142, 144mpbird 257 . . . . . . . . . . 11 (𝜑 → (𝑁 − (𝑁 / 2)) = (𝑁 / 2))
146141, 145breqtrrd 5123 . . . . . . . . . 10 (𝜑𝑅 ≤ (𝑁 − (𝑁 / 2)))
14729, 44, 133, 146lesubd 11730 . . . . . . . . 9 (𝜑 → (𝑁 / 2) ≤ (𝑁𝑅))
14844lep1d 12062 . . . . . . . . 9 (𝜑𝑁 ≤ (𝑁 + 1))
149133, 134, 44, 135, 139, 138, 147, 148lemul12ad 12073 . . . . . . . 8 (𝜑 → ((𝑁 / 2) · 𝑁) ≤ ((𝑁𝑅) · (𝑁 + 1)))
150132, 149eqbrtrd 5117 . . . . . . 7 (𝜑 → ((𝑁↑2) / 2) ≤ ((𝑁𝑅) · (𝑁 + 1)))
151122, 116, 33, 125, 150lediv2ad 12960 . . . . . 6 (𝜑 → ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1))) ≤ ((𝑅 + 1) / ((𝑁↑2) / 2)))
1521peano2nnd 12151 . . . . . . . . 9 (𝜑 → (𝑅 + 1) ∈ ℕ)
153152nncnd 12150 . . . . . . . 8 (𝜑 → (𝑅 + 1) ∈ ℂ)
15435nncnd 12150 . . . . . . . 8 (𝜑 → (𝑁↑2) ∈ ℂ)
15535nnne0d 12184 . . . . . . . 8 (𝜑 → (𝑁↑2) ≠ 0)
156153, 154, 128, 155, 130divdiv2d 11938 . . . . . . 7 (𝜑 → ((𝑅 + 1) / ((𝑁↑2) / 2)) = (((𝑅 + 1) · 2) / (𝑁↑2)))
157153, 128mulcomd 11142 . . . . . . . 8 (𝜑 → ((𝑅 + 1) · 2) = (2 · (𝑅 + 1)))
158157oveq1d 7369 . . . . . . 7 (𝜑 → (((𝑅 + 1) · 2) / (𝑁↑2)) = ((2 · (𝑅 + 1)) / (𝑁↑2)))
159156, 158eqtr2d 2769 . . . . . 6 (𝜑 → ((2 · (𝑅 + 1)) / (𝑁↑2)) = ((𝑅 + 1) / ((𝑁↑2) / 2)))
160151, 159breqtrrd 5123 . . . . 5 (𝜑 → ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1))) ≤ ((2 · (𝑅 + 1)) / (𝑁↑2)))
161117, 36, 29, 118, 160lemul2ad 12071 . . . 4 (𝜑 → (𝑅 · ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))))
162115, 161eqbrtrrd 5119 . . 3 (𝜑 → ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))))
16328, 58, 37, 95, 162letrd 11279 . 2 (𝜑 → ((abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) + (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))))
16423, 28, 37, 38, 163letrd 11279 1 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  {crab 3396  cdif 3895   class class class wbr 5095  cfv 6488  (class class class)co 7354  cc 11013  cr 11014  0cc0 11015  1c1 11016   + caddc 11018   · cmul 11020   < clt 11155  cle 11156  cmin 11353   / cdiv 11783  cn 12134  2c2 12189  0cn0 12390  cz 12477  +crp 12894  cexp 13972  abscabs 15145  logclog 26493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093  ax-addf 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-map 8760  df-pm 8761  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-fi 9304  df-sup 9335  df-inf 9336  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-q 12851  df-rp 12895  df-xneg 13015  df-xadd 13016  df-xmul 13017  df-ioo 13253  df-ioc 13254  df-ico 13255  df-icc 13256  df-fz 13412  df-fzo 13559  df-fl 13700  df-mod 13778  df-seq 13913  df-exp 13973  df-fac 14185  df-bc 14214  df-hash 14242  df-shft 14978  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-limsup 15382  df-clim 15399  df-rlim 15400  df-sum 15598  df-ef 15978  df-sin 15980  df-cos 15981  df-tan 15982  df-pi 15983  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-starv 17180  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-unif 17188  df-hom 17189  df-cco 17190  df-rest 17330  df-topn 17331  df-0g 17349  df-gsum 17350  df-topgen 17351  df-pt 17352  df-prds 17355  df-xrs 17410  df-qtop 17415  df-imas 17416  df-xps 17418  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-submnd 18696  df-mulg 18985  df-cntz 19233  df-cmn 19698  df-psmet 21287  df-xmet 21288  df-met 21289  df-bl 21290  df-mopn 21291  df-fbas 21292  df-fg 21293  df-cnfld 21296  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22864  df-cld 22937  df-ntr 22938  df-cls 22939  df-nei 23016  df-lp 23054  df-perf 23055  df-cn 23145  df-cnp 23146  df-haus 23233  df-cmp 23305  df-tx 23480  df-hmeo 23673  df-fil 23764  df-fm 23856  df-flim 23857  df-flf 23858  df-xms 24238  df-ms 24239  df-tms 24240  df-cncf 24801  df-limc 25797  df-dv 25798  df-log 26495
This theorem is referenced by:  lgamgulmlem5  26973
  Copyright terms: Public domain W3C validator