MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem3 Structured version   Visualization version   GIF version

Theorem lgamgulmlem3 26941
Description: Lemma for lgamgulm 26945. (Contributed by Mario Carneiro, 3-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.n (𝜑𝑁 ∈ ℕ)
lgamgulm.a (𝜑𝐴𝑈)
lgamgulm.l (𝜑 → (2 · 𝑅) ≤ 𝑁)
Assertion
Ref Expression
lgamgulmlem3 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑘,𝑅   𝐴,𝑘,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝑈(𝑥,𝑘)   𝑁(𝑘)

Proof of Theorem lgamgulmlem3
StepHypRef Expression
1 lgamgulm.r . . . . . . . 8 (𝜑𝑅 ∈ ℕ)
2 lgamgulm.u . . . . . . . 8 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
31, 2lgamgulmlem1 26939 . . . . . . 7 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
4 lgamgulm.a . . . . . . 7 (𝜑𝐴𝑈)
53, 4sseldd 3947 . . . . . 6 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
65eldifad 3926 . . . . 5 (𝜑𝐴 ∈ ℂ)
7 lgamgulm.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
87peano2nnd 12203 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℕ)
98nnrpd 12993 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℝ+)
107nnrpd 12993 . . . . . . . 8 (𝜑𝑁 ∈ ℝ+)
119, 10rpdivcld 13012 . . . . . . 7 (𝜑 → ((𝑁 + 1) / 𝑁) ∈ ℝ+)
1211relogcld 26532 . . . . . 6 (𝜑 → (log‘((𝑁 + 1) / 𝑁)) ∈ ℝ)
1312recnd 11202 . . . . 5 (𝜑 → (log‘((𝑁 + 1) / 𝑁)) ∈ ℂ)
146, 13mulcld 11194 . . . 4 (𝜑 → (𝐴 · (log‘((𝑁 + 1) / 𝑁))) ∈ ℂ)
157nncnd 12202 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
167nnne0d 12236 . . . . . . 7 (𝜑𝑁 ≠ 0)
176, 15, 16divcld 11958 . . . . . 6 (𝜑 → (𝐴 / 𝑁) ∈ ℂ)
18 1cnd 11169 . . . . . 6 (𝜑 → 1 ∈ ℂ)
1917, 18addcld 11193 . . . . 5 (𝜑 → ((𝐴 / 𝑁) + 1) ∈ ℂ)
205, 7dmgmdivn0 26938 . . . . 5 (𝜑 → ((𝐴 / 𝑁) + 1) ≠ 0)
2119, 20logcld 26479 . . . 4 (𝜑 → (log‘((𝐴 / 𝑁) + 1)) ∈ ℂ)
2214, 21subcld 11533 . . 3 (𝜑 → ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1))) ∈ ℂ)
2322abscld 15405 . 2 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ∈ ℝ)
2414, 17subcld 11533 . . . 4 (𝜑 → ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁)) ∈ ℂ)
2524abscld 15405 . . 3 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) ∈ ℝ)
2617, 21subcld 11533 . . . 4 (𝜑 → ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) ∈ ℂ)
2726abscld 15405 . . 3 (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ∈ ℝ)
2825, 27readdcld 11203 . 2 (𝜑 → ((abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) + (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))) ∈ ℝ)
291nnred 12201 . . 3 (𝜑𝑅 ∈ ℝ)
30 2re 12260 . . . . . 6 2 ∈ ℝ
3130a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ)
32 1red 11175 . . . . . 6 (𝜑 → 1 ∈ ℝ)
3329, 32readdcld 11203 . . . . 5 (𝜑 → (𝑅 + 1) ∈ ℝ)
3431, 33remulcld 11204 . . . 4 (𝜑 → (2 · (𝑅 + 1)) ∈ ℝ)
357nnsqcld 14209 . . . 4 (𝜑 → (𝑁↑2) ∈ ℕ)
3634, 35nndivred 12240 . . 3 (𝜑 → ((2 · (𝑅 + 1)) / (𝑁↑2)) ∈ ℝ)
3729, 36remulcld 11204 . 2 (𝜑 → (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))) ∈ ℝ)
3814, 21, 17abs3difd 15429 . 2 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ≤ ((abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) + (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))))
397nnrecred 12237 . . . . . 6 (𝜑 → (1 / 𝑁) ∈ ℝ)
408nnrecred 12237 . . . . . 6 (𝜑 → (1 / (𝑁 + 1)) ∈ ℝ)
4139, 40resubcld 11606 . . . . 5 (𝜑 → ((1 / 𝑁) − (1 / (𝑁 + 1))) ∈ ℝ)
4229, 41remulcld 11204 . . . 4 (𝜑 → (𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) ∈ ℝ)
4331, 29remulcld 11204 . . . . . . . . 9 (𝜑 → (2 · 𝑅) ∈ ℝ)
447nnred 12201 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
451nnrpd 12993 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℝ+)
4629, 45ltaddrpd 13028 . . . . . . . . . 10 (𝜑𝑅 < (𝑅 + 𝑅))
471nncnd 12202 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℂ)
48472timesd 12425 . . . . . . . . . 10 (𝜑 → (2 · 𝑅) = (𝑅 + 𝑅))
4946, 48breqtrrd 5135 . . . . . . . . 9 (𝜑𝑅 < (2 · 𝑅))
50 lgamgulm.l . . . . . . . . 9 (𝜑 → (2 · 𝑅) ≤ 𝑁)
5129, 43, 44, 49, 50ltletrd 11334 . . . . . . . 8 (𝜑𝑅 < 𝑁)
52 difrp 12991 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑅 < 𝑁 ↔ (𝑁𝑅) ∈ ℝ+))
5329, 44, 52syl2anc 584 . . . . . . . 8 (𝜑 → (𝑅 < 𝑁 ↔ (𝑁𝑅) ∈ ℝ+))
5451, 53mpbid 232 . . . . . . 7 (𝜑 → (𝑁𝑅) ∈ ℝ+)
5554rprecred 13006 . . . . . 6 (𝜑 → (1 / (𝑁𝑅)) ∈ ℝ)
5655, 39resubcld 11606 . . . . 5 (𝜑 → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℝ)
5729, 56remulcld 11204 . . . 4 (𝜑 → (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ∈ ℝ)
5842, 57readdcld 11203 . . 3 (𝜑 → ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))) ∈ ℝ)
596, 15, 16divrecd 11961 . . . . . . . . 9 (𝜑 → (𝐴 / 𝑁) = (𝐴 · (1 / 𝑁)))
6059oveq2d 7403 . . . . . . . 8 (𝜑 → ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁)) = ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 · (1 / 𝑁))))
6139recnd 11202 . . . . . . . . 9 (𝜑 → (1 / 𝑁) ∈ ℂ)
626, 13, 61subdid 11634 . . . . . . . 8 (𝜑 → (𝐴 · ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))) = ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 · (1 / 𝑁))))
6360, 62eqtr4d 2767 . . . . . . 7 (𝜑 → ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁)) = (𝐴 · ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))))
6463fveq2d 6862 . . . . . 6 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) = (abs‘(𝐴 · ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))))
6513, 61subcld 11533 . . . . . . 7 (𝜑 → ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)) ∈ ℂ)
666, 65absmuld 15423 . . . . . 6 (𝜑 → (abs‘(𝐴 · ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))) = ((abs‘𝐴) · (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))))
6764, 66eqtrd 2764 . . . . 5 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) = ((abs‘𝐴) · (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))))
686abscld 15405 . . . . . 6 (𝜑 → (abs‘𝐴) ∈ ℝ)
6965abscld 15405 . . . . . 6 (𝜑 → (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))) ∈ ℝ)
706absge0d 15413 . . . . . 6 (𝜑 → 0 ≤ (abs‘𝐴))
7165absge0d 15413 . . . . . 6 (𝜑 → 0 ≤ (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))))
72 fveq2 6858 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (abs‘𝑥) = (abs‘𝐴))
7372breq1d 5117 . . . . . . . . . . 11 (𝑥 = 𝐴 → ((abs‘𝑥) ≤ 𝑅 ↔ (abs‘𝐴) ≤ 𝑅))
74 fvoveq1 7410 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝐴 + 𝑘)))
7574breq2d 5119 . . . . . . . . . . . 12 (𝑥 = 𝐴 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7675ralbidv 3156 . . . . . . . . . . 11 (𝑥 = 𝐴 → (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7773, 76anbi12d 632 . . . . . . . . . 10 (𝑥 = 𝐴 → (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘)))))
7877, 2elrab2 3662 . . . . . . . . 9 (𝐴𝑈 ↔ (𝐴 ∈ ℂ ∧ ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘)))))
7978simprbi 496 . . . . . . . 8 (𝐴𝑈 → ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
804, 79syl 17 . . . . . . 7 (𝜑 → ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
8180simpld 494 . . . . . 6 (𝜑 → (abs‘𝐴) ≤ 𝑅)
829, 10relogdivd 26535 . . . . . . . . 9 (𝜑 → (log‘((𝑁 + 1) / 𝑁)) = ((log‘(𝑁 + 1)) − (log‘𝑁)))
83 logdifbnd 26904 . . . . . . . . . 10 (𝑁 ∈ ℝ+ → ((log‘(𝑁 + 1)) − (log‘𝑁)) ≤ (1 / 𝑁))
8410, 83syl 17 . . . . . . . . 9 (𝜑 → ((log‘(𝑁 + 1)) − (log‘𝑁)) ≤ (1 / 𝑁))
8582, 84eqbrtrd 5129 . . . . . . . 8 (𝜑 → (log‘((𝑁 + 1) / 𝑁)) ≤ (1 / 𝑁))
8612, 39, 85abssuble0d 15401 . . . . . . 7 (𝜑 → (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))) = ((1 / 𝑁) − (log‘((𝑁 + 1) / 𝑁))))
87 logdiflbnd 26905 . . . . . . . . . 10 (𝑁 ∈ ℝ+ → (1 / (𝑁 + 1)) ≤ ((log‘(𝑁 + 1)) − (log‘𝑁)))
8810, 87syl 17 . . . . . . . . 9 (𝜑 → (1 / (𝑁 + 1)) ≤ ((log‘(𝑁 + 1)) − (log‘𝑁)))
8988, 82breqtrrd 5135 . . . . . . . 8 (𝜑 → (1 / (𝑁 + 1)) ≤ (log‘((𝑁 + 1) / 𝑁)))
9040, 12, 39, 89lesub2dd 11795 . . . . . . 7 (𝜑 → ((1 / 𝑁) − (log‘((𝑁 + 1) / 𝑁))) ≤ ((1 / 𝑁) − (1 / (𝑁 + 1))))
9186, 90eqbrtrd 5129 . . . . . 6 (𝜑 → (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))) ≤ ((1 / 𝑁) − (1 / (𝑁 + 1))))
9268, 29, 69, 41, 70, 71, 81, 91lemul12ad 12125 . . . . 5 (𝜑 → ((abs‘𝐴) · (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))) ≤ (𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))))
9367, 92eqbrtrd 5129 . . . 4 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) ≤ (𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))))
941, 2, 7, 4, 50lgamgulmlem2 26940 . . . 4 (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
9525, 27, 42, 57, 93, 94le2addd 11797 . . 3 (𝜑 → ((abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) + (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))) ≤ ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
9615, 47subcld 11533 . . . . . . . 8 (𝜑 → (𝑁𝑅) ∈ ℂ)
9715, 18addcld 11193 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℂ)
9829, 51gtned 11309 . . . . . . . . 9 (𝜑𝑁𝑅)
9915, 47, 98subne0d 11542 . . . . . . . 8 (𝜑 → (𝑁𝑅) ≠ 0)
1008nnne0d 12236 . . . . . . . 8 (𝜑 → (𝑁 + 1) ≠ 0)
10196, 97, 99, 100subrecd 12011 . . . . . . 7 (𝜑 → ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1))) = (((𝑁 + 1) − (𝑁𝑅)) / ((𝑁𝑅) · (𝑁 + 1))))
10215, 18, 47pnncand 11572 . . . . . . . . 9 (𝜑 → ((𝑁 + 1) − (𝑁𝑅)) = (1 + 𝑅))
10318, 47, 102comraddd 11388 . . . . . . . 8 (𝜑 → ((𝑁 + 1) − (𝑁𝑅)) = (𝑅 + 1))
104103oveq1d 7402 . . . . . . 7 (𝜑 → (((𝑁 + 1) − (𝑁𝑅)) / ((𝑁𝑅) · (𝑁 + 1))) = ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1))))
105101, 104eqtr2d 2765 . . . . . 6 (𝜑 → ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1))) = ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1))))
106105oveq2d 7403 . . . . 5 (𝜑 → (𝑅 · ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1)))) = (𝑅 · ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1)))))
10797, 100reccld 11951 . . . . . . . 8 (𝜑 → (1 / (𝑁 + 1)) ∈ ℂ)
10896, 99reccld 11951 . . . . . . . 8 (𝜑 → (1 / (𝑁𝑅)) ∈ ℂ)
10961, 107, 108npncan3d 11569 . . . . . . 7 (𝜑 → (((1 / 𝑁) − (1 / (𝑁 + 1))) + ((1 / (𝑁𝑅)) − (1 / 𝑁))) = ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1))))
110109eqcomd 2735 . . . . . 6 (𝜑 → ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1))) = (((1 / 𝑁) − (1 / (𝑁 + 1))) + ((1 / (𝑁𝑅)) − (1 / 𝑁))))
111110oveq2d 7403 . . . . 5 (𝜑 → (𝑅 · ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1)))) = (𝑅 · (((1 / 𝑁) − (1 / (𝑁 + 1))) + ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
11241recnd 11202 . . . . . 6 (𝜑 → ((1 / 𝑁) − (1 / (𝑁 + 1))) ∈ ℂ)
11356recnd 11202 . . . . . 6 (𝜑 → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℂ)
11447, 112, 113adddid 11198 . . . . 5 (𝜑 → (𝑅 · (((1 / 𝑁) − (1 / (𝑁 + 1))) + ((1 / (𝑁𝑅)) − (1 / 𝑁)))) = ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
115106, 111, 1143eqtrd 2768 . . . 4 (𝜑 → (𝑅 · ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1)))) = ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
11654, 9rpmulcld 13011 . . . . . 6 (𝜑 → ((𝑁𝑅) · (𝑁 + 1)) ∈ ℝ+)
11733, 116rerpdivcld 13026 . . . . 5 (𝜑 → ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1))) ∈ ℝ)
11845rpge0d 12999 . . . . 5 (𝜑 → 0 ≤ 𝑅)
119 2z 12565 . . . . . . . . . 10 2 ∈ ℤ
120119a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℤ)
12110, 120rpexpcld 14212 . . . . . . . 8 (𝜑 → (𝑁↑2) ∈ ℝ+)
122121rphalfcld 13007 . . . . . . 7 (𝜑 → ((𝑁↑2) / 2) ∈ ℝ+)
123 0le1 11701 . . . . . . . . 9 0 ≤ 1
124123a1i 11 . . . . . . . 8 (𝜑 → 0 ≤ 1)
12529, 32, 118, 124addge0d 11754 . . . . . . 7 (𝜑 → 0 ≤ (𝑅 + 1))
12615sqvald 14108 . . . . . . . . . 10 (𝜑 → (𝑁↑2) = (𝑁 · 𝑁))
127126oveq1d 7402 . . . . . . . . 9 (𝜑 → ((𝑁↑2) / 2) = ((𝑁 · 𝑁) / 2))
12831recnd 11202 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
129 2ne0 12290 . . . . . . . . . . 11 2 ≠ 0
130129a1i 11 . . . . . . . . . 10 (𝜑 → 2 ≠ 0)
13115, 15, 128, 130div23d 11995 . . . . . . . . 9 (𝜑 → ((𝑁 · 𝑁) / 2) = ((𝑁 / 2) · 𝑁))
132127, 131eqtrd 2764 . . . . . . . 8 (𝜑 → ((𝑁↑2) / 2) = ((𝑁 / 2) · 𝑁))
13344rehalfcld 12429 . . . . . . . . 9 (𝜑 → (𝑁 / 2) ∈ ℝ)
13444, 29resubcld 11606 . . . . . . . . 9 (𝜑 → (𝑁𝑅) ∈ ℝ)
13544, 32readdcld 11203 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℝ)
136 2rp 12956 . . . . . . . . . . 11 2 ∈ ℝ+
137136a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ+)
13810rpge0d 12999 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑁)
13944, 137, 138divge0d 13035 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑁 / 2))
14029, 44, 137lemuldiv2d 13045 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑅) ≤ 𝑁𝑅 ≤ (𝑁 / 2)))
14150, 140mpbid 232 . . . . . . . . . . 11 (𝜑𝑅 ≤ (𝑁 / 2))
142152halvesd 12428 . . . . . . . . . . . 12 (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) = 𝑁)
143133recnd 11202 . . . . . . . . . . . . 13 (𝜑 → (𝑁 / 2) ∈ ℂ)
14415, 143, 143subaddd 11551 . . . . . . . . . . . 12 (𝜑 → ((𝑁 − (𝑁 / 2)) = (𝑁 / 2) ↔ ((𝑁 / 2) + (𝑁 / 2)) = 𝑁))
145142, 144mpbird 257 . . . . . . . . . . 11 (𝜑 → (𝑁 − (𝑁 / 2)) = (𝑁 / 2))
146141, 145breqtrrd 5135 . . . . . . . . . 10 (𝜑𝑅 ≤ (𝑁 − (𝑁 / 2)))
14729, 44, 133, 146lesubd 11782 . . . . . . . . 9 (𝜑 → (𝑁 / 2) ≤ (𝑁𝑅))
14844lep1d 12114 . . . . . . . . 9 (𝜑𝑁 ≤ (𝑁 + 1))
149133, 134, 44, 135, 139, 138, 147, 148lemul12ad 12125 . . . . . . . 8 (𝜑 → ((𝑁 / 2) · 𝑁) ≤ ((𝑁𝑅) · (𝑁 + 1)))
150132, 149eqbrtrd 5129 . . . . . . 7 (𝜑 → ((𝑁↑2) / 2) ≤ ((𝑁𝑅) · (𝑁 + 1)))
151122, 116, 33, 125, 150lediv2ad 13017 . . . . . 6 (𝜑 → ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1))) ≤ ((𝑅 + 1) / ((𝑁↑2) / 2)))
1521peano2nnd 12203 . . . . . . . . 9 (𝜑 → (𝑅 + 1) ∈ ℕ)
153152nncnd 12202 . . . . . . . 8 (𝜑 → (𝑅 + 1) ∈ ℂ)
15435nncnd 12202 . . . . . . . 8 (𝜑 → (𝑁↑2) ∈ ℂ)
15535nnne0d 12236 . . . . . . . 8 (𝜑 → (𝑁↑2) ≠ 0)
156153, 154, 128, 155, 130divdiv2d 11990 . . . . . . 7 (𝜑 → ((𝑅 + 1) / ((𝑁↑2) / 2)) = (((𝑅 + 1) · 2) / (𝑁↑2)))
157153, 128mulcomd 11195 . . . . . . . 8 (𝜑 → ((𝑅 + 1) · 2) = (2 · (𝑅 + 1)))
158157oveq1d 7402 . . . . . . 7 (𝜑 → (((𝑅 + 1) · 2) / (𝑁↑2)) = ((2 · (𝑅 + 1)) / (𝑁↑2)))
159156, 158eqtr2d 2765 . . . . . 6 (𝜑 → ((2 · (𝑅 + 1)) / (𝑁↑2)) = ((𝑅 + 1) / ((𝑁↑2) / 2)))
160151, 159breqtrrd 5135 . . . . 5 (𝜑 → ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1))) ≤ ((2 · (𝑅 + 1)) / (𝑁↑2)))
161117, 36, 29, 118, 160lemul2ad 12123 . . . 4 (𝜑 → (𝑅 · ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))))
162115, 161eqbrtrrd 5131 . . 3 (𝜑 → ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))))
16328, 58, 37, 95, 162letrd 11331 . 2 (𝜑 → ((abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) + (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))))
16423, 28, 37, 38, 163letrd 11331 1 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3405  cdif 3911   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  cz 12529  +crp 12951  cexp 14026  abscabs 15200  logclog 26463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-tan 16037  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465
This theorem is referenced by:  lgamgulmlem5  26943
  Copyright terms: Public domain W3C validator