MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem3 Structured version   Visualization version   GIF version

Theorem lgamgulmlem3 25715
Description: Lemma for lgamgulm 25719. (Contributed by Mario Carneiro, 3-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.n (𝜑𝑁 ∈ ℕ)
lgamgulm.a (𝜑𝐴𝑈)
lgamgulm.l (𝜑 → (2 · 𝑅) ≤ 𝑁)
Assertion
Ref Expression
lgamgulmlem3 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑘,𝑅   𝐴,𝑘,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝑈(𝑥,𝑘)   𝑁(𝑘)

Proof of Theorem lgamgulmlem3
StepHypRef Expression
1 lgamgulm.r . . . . . . . 8 (𝜑𝑅 ∈ ℕ)
2 lgamgulm.u . . . . . . . 8 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
31, 2lgamgulmlem1 25713 . . . . . . 7 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
4 lgamgulm.a . . . . . . 7 (𝜑𝐴𝑈)
53, 4sseldd 3893 . . . . . 6 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
65eldifad 3870 . . . . 5 (𝜑𝐴 ∈ ℂ)
7 lgamgulm.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
87peano2nnd 11691 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℕ)
98nnrpd 12470 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℝ+)
107nnrpd 12470 . . . . . . . 8 (𝜑𝑁 ∈ ℝ+)
119, 10rpdivcld 12489 . . . . . . 7 (𝜑 → ((𝑁 + 1) / 𝑁) ∈ ℝ+)
1211relogcld 25313 . . . . . 6 (𝜑 → (log‘((𝑁 + 1) / 𝑁)) ∈ ℝ)
1312recnd 10707 . . . . 5 (𝜑 → (log‘((𝑁 + 1) / 𝑁)) ∈ ℂ)
146, 13mulcld 10699 . . . 4 (𝜑 → (𝐴 · (log‘((𝑁 + 1) / 𝑁))) ∈ ℂ)
157nncnd 11690 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
167nnne0d 11724 . . . . . . 7 (𝜑𝑁 ≠ 0)
176, 15, 16divcld 11454 . . . . . 6 (𝜑 → (𝐴 / 𝑁) ∈ ℂ)
18 1cnd 10674 . . . . . 6 (𝜑 → 1 ∈ ℂ)
1917, 18addcld 10698 . . . . 5 (𝜑 → ((𝐴 / 𝑁) + 1) ∈ ℂ)
205, 7dmgmdivn0 25712 . . . . 5 (𝜑 → ((𝐴 / 𝑁) + 1) ≠ 0)
2119, 20logcld 25261 . . . 4 (𝜑 → (log‘((𝐴 / 𝑁) + 1)) ∈ ℂ)
2214, 21subcld 11035 . . 3 (𝜑 → ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1))) ∈ ℂ)
2322abscld 14844 . 2 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ∈ ℝ)
2414, 17subcld 11035 . . . 4 (𝜑 → ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁)) ∈ ℂ)
2524abscld 14844 . . 3 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) ∈ ℝ)
2617, 21subcld 11035 . . . 4 (𝜑 → ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) ∈ ℂ)
2726abscld 14844 . . 3 (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ∈ ℝ)
2825, 27readdcld 10708 . 2 (𝜑 → ((abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) + (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))) ∈ ℝ)
291nnred 11689 . . 3 (𝜑𝑅 ∈ ℝ)
30 2re 11748 . . . . . 6 2 ∈ ℝ
3130a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ)
32 1red 10680 . . . . . 6 (𝜑 → 1 ∈ ℝ)
3329, 32readdcld 10708 . . . . 5 (𝜑 → (𝑅 + 1) ∈ ℝ)
3431, 33remulcld 10709 . . . 4 (𝜑 → (2 · (𝑅 + 1)) ∈ ℝ)
357nnsqcld 13655 . . . 4 (𝜑 → (𝑁↑2) ∈ ℕ)
3634, 35nndivred 11728 . . 3 (𝜑 → ((2 · (𝑅 + 1)) / (𝑁↑2)) ∈ ℝ)
3729, 36remulcld 10709 . 2 (𝜑 → (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))) ∈ ℝ)
3814, 21, 17abs3difd 14868 . 2 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ≤ ((abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) + (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))))
397nnrecred 11725 . . . . . 6 (𝜑 → (1 / 𝑁) ∈ ℝ)
408nnrecred 11725 . . . . . 6 (𝜑 → (1 / (𝑁 + 1)) ∈ ℝ)
4139, 40resubcld 11106 . . . . 5 (𝜑 → ((1 / 𝑁) − (1 / (𝑁 + 1))) ∈ ℝ)
4229, 41remulcld 10709 . . . 4 (𝜑 → (𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) ∈ ℝ)
4331, 29remulcld 10709 . . . . . . . . 9 (𝜑 → (2 · 𝑅) ∈ ℝ)
447nnred 11689 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
451nnrpd 12470 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℝ+)
4629, 45ltaddrpd 12505 . . . . . . . . . 10 (𝜑𝑅 < (𝑅 + 𝑅))
471nncnd 11690 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℂ)
48472timesd 11917 . . . . . . . . . 10 (𝜑 → (2 · 𝑅) = (𝑅 + 𝑅))
4946, 48breqtrrd 5060 . . . . . . . . 9 (𝜑𝑅 < (2 · 𝑅))
50 lgamgulm.l . . . . . . . . 9 (𝜑 → (2 · 𝑅) ≤ 𝑁)
5129, 43, 44, 49, 50ltletrd 10838 . . . . . . . 8 (𝜑𝑅 < 𝑁)
52 difrp 12468 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑅 < 𝑁 ↔ (𝑁𝑅) ∈ ℝ+))
5329, 44, 52syl2anc 587 . . . . . . . 8 (𝜑 → (𝑅 < 𝑁 ↔ (𝑁𝑅) ∈ ℝ+))
5451, 53mpbid 235 . . . . . . 7 (𝜑 → (𝑁𝑅) ∈ ℝ+)
5554rprecred 12483 . . . . . 6 (𝜑 → (1 / (𝑁𝑅)) ∈ ℝ)
5655, 39resubcld 11106 . . . . 5 (𝜑 → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℝ)
5729, 56remulcld 10709 . . . 4 (𝜑 → (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ∈ ℝ)
5842, 57readdcld 10708 . . 3 (𝜑 → ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))) ∈ ℝ)
596, 15, 16divrecd 11457 . . . . . . . . 9 (𝜑 → (𝐴 / 𝑁) = (𝐴 · (1 / 𝑁)))
6059oveq2d 7166 . . . . . . . 8 (𝜑 → ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁)) = ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 · (1 / 𝑁))))
6139recnd 10707 . . . . . . . . 9 (𝜑 → (1 / 𝑁) ∈ ℂ)
626, 13, 61subdid 11134 . . . . . . . 8 (𝜑 → (𝐴 · ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))) = ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 · (1 / 𝑁))))
6360, 62eqtr4d 2796 . . . . . . 7 (𝜑 → ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁)) = (𝐴 · ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))))
6463fveq2d 6662 . . . . . 6 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) = (abs‘(𝐴 · ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))))
6513, 61subcld 11035 . . . . . . 7 (𝜑 → ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)) ∈ ℂ)
666, 65absmuld 14862 . . . . . 6 (𝜑 → (abs‘(𝐴 · ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))) = ((abs‘𝐴) · (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))))
6764, 66eqtrd 2793 . . . . 5 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) = ((abs‘𝐴) · (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))))
686abscld 14844 . . . . . 6 (𝜑 → (abs‘𝐴) ∈ ℝ)
6965abscld 14844 . . . . . 6 (𝜑 → (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))) ∈ ℝ)
706absge0d 14852 . . . . . 6 (𝜑 → 0 ≤ (abs‘𝐴))
7165absge0d 14852 . . . . . 6 (𝜑 → 0 ≤ (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))))
72 fveq2 6658 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (abs‘𝑥) = (abs‘𝐴))
7372breq1d 5042 . . . . . . . . . . 11 (𝑥 = 𝐴 → ((abs‘𝑥) ≤ 𝑅 ↔ (abs‘𝐴) ≤ 𝑅))
74 fvoveq1 7173 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝐴 + 𝑘)))
7574breq2d 5044 . . . . . . . . . . . 12 (𝑥 = 𝐴 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7675ralbidv 3126 . . . . . . . . . . 11 (𝑥 = 𝐴 → (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7773, 76anbi12d 633 . . . . . . . . . 10 (𝑥 = 𝐴 → (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘)))))
7877, 2elrab2 3605 . . . . . . . . 9 (𝐴𝑈 ↔ (𝐴 ∈ ℂ ∧ ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘)))))
7978simprbi 500 . . . . . . . 8 (𝐴𝑈 → ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
804, 79syl 17 . . . . . . 7 (𝜑 → ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
8180simpld 498 . . . . . 6 (𝜑 → (abs‘𝐴) ≤ 𝑅)
829, 10relogdivd 25316 . . . . . . . . 9 (𝜑 → (log‘((𝑁 + 1) / 𝑁)) = ((log‘(𝑁 + 1)) − (log‘𝑁)))
83 logdifbnd 25678 . . . . . . . . . 10 (𝑁 ∈ ℝ+ → ((log‘(𝑁 + 1)) − (log‘𝑁)) ≤ (1 / 𝑁))
8410, 83syl 17 . . . . . . . . 9 (𝜑 → ((log‘(𝑁 + 1)) − (log‘𝑁)) ≤ (1 / 𝑁))
8582, 84eqbrtrd 5054 . . . . . . . 8 (𝜑 → (log‘((𝑁 + 1) / 𝑁)) ≤ (1 / 𝑁))
8612, 39, 85abssuble0d 14840 . . . . . . 7 (𝜑 → (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))) = ((1 / 𝑁) − (log‘((𝑁 + 1) / 𝑁))))
87 logdiflbnd 25679 . . . . . . . . . 10 (𝑁 ∈ ℝ+ → (1 / (𝑁 + 1)) ≤ ((log‘(𝑁 + 1)) − (log‘𝑁)))
8810, 87syl 17 . . . . . . . . 9 (𝜑 → (1 / (𝑁 + 1)) ≤ ((log‘(𝑁 + 1)) − (log‘𝑁)))
8988, 82breqtrrd 5060 . . . . . . . 8 (𝜑 → (1 / (𝑁 + 1)) ≤ (log‘((𝑁 + 1) / 𝑁)))
9040, 12, 39, 89lesub2dd 11295 . . . . . . 7 (𝜑 → ((1 / 𝑁) − (log‘((𝑁 + 1) / 𝑁))) ≤ ((1 / 𝑁) − (1 / (𝑁 + 1))))
9186, 90eqbrtrd 5054 . . . . . 6 (𝜑 → (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))) ≤ ((1 / 𝑁) − (1 / (𝑁 + 1))))
9268, 29, 69, 41, 70, 71, 81, 91lemul12ad 11620 . . . . 5 (𝜑 → ((abs‘𝐴) · (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))) ≤ (𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))))
9367, 92eqbrtrd 5054 . . . 4 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) ≤ (𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))))
941, 2, 7, 4, 50lgamgulmlem2 25714 . . . 4 (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
9525, 27, 42, 57, 93, 94le2addd 11297 . . 3 (𝜑 → ((abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) + (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))) ≤ ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
9615, 47subcld 11035 . . . . . . . 8 (𝜑 → (𝑁𝑅) ∈ ℂ)
9715, 18addcld 10698 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℂ)
9829, 51gtned 10813 . . . . . . . . 9 (𝜑𝑁𝑅)
9915, 47, 98subne0d 11044 . . . . . . . 8 (𝜑 → (𝑁𝑅) ≠ 0)
1008nnne0d 11724 . . . . . . . 8 (𝜑 → (𝑁 + 1) ≠ 0)
10196, 97, 99, 100subrecd 11509 . . . . . . 7 (𝜑 → ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1))) = (((𝑁 + 1) − (𝑁𝑅)) / ((𝑁𝑅) · (𝑁 + 1))))
10215, 18, 47pnncand 11074 . . . . . . . . 9 (𝜑 → ((𝑁 + 1) − (𝑁𝑅)) = (1 + 𝑅))
10318, 47, 102comraddd 10892 . . . . . . . 8 (𝜑 → ((𝑁 + 1) − (𝑁𝑅)) = (𝑅 + 1))
104103oveq1d 7165 . . . . . . 7 (𝜑 → (((𝑁 + 1) − (𝑁𝑅)) / ((𝑁𝑅) · (𝑁 + 1))) = ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1))))
105101, 104eqtr2d 2794 . . . . . 6 (𝜑 → ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1))) = ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1))))
106105oveq2d 7166 . . . . 5 (𝜑 → (𝑅 · ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1)))) = (𝑅 · ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1)))))
10797, 100reccld 11447 . . . . . . . 8 (𝜑 → (1 / (𝑁 + 1)) ∈ ℂ)
10896, 99reccld 11447 . . . . . . . 8 (𝜑 → (1 / (𝑁𝑅)) ∈ ℂ)
10961, 107, 108npncan3d 11071 . . . . . . 7 (𝜑 → (((1 / 𝑁) − (1 / (𝑁 + 1))) + ((1 / (𝑁𝑅)) − (1 / 𝑁))) = ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1))))
110109eqcomd 2764 . . . . . 6 (𝜑 → ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1))) = (((1 / 𝑁) − (1 / (𝑁 + 1))) + ((1 / (𝑁𝑅)) − (1 / 𝑁))))
111110oveq2d 7166 . . . . 5 (𝜑 → (𝑅 · ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1)))) = (𝑅 · (((1 / 𝑁) − (1 / (𝑁 + 1))) + ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
11241recnd 10707 . . . . . 6 (𝜑 → ((1 / 𝑁) − (1 / (𝑁 + 1))) ∈ ℂ)
11356recnd 10707 . . . . . 6 (𝜑 → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℂ)
11447, 112, 113adddid 10703 . . . . 5 (𝜑 → (𝑅 · (((1 / 𝑁) − (1 / (𝑁 + 1))) + ((1 / (𝑁𝑅)) − (1 / 𝑁)))) = ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
115106, 111, 1143eqtrd 2797 . . . 4 (𝜑 → (𝑅 · ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1)))) = ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
11654, 9rpmulcld 12488 . . . . . 6 (𝜑 → ((𝑁𝑅) · (𝑁 + 1)) ∈ ℝ+)
11733, 116rerpdivcld 12503 . . . . 5 (𝜑 → ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1))) ∈ ℝ)
11845rpge0d 12476 . . . . 5 (𝜑 → 0 ≤ 𝑅)
119 2z 12053 . . . . . . . . . 10 2 ∈ ℤ
120119a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℤ)
12110, 120rpexpcld 13658 . . . . . . . 8 (𝜑 → (𝑁↑2) ∈ ℝ+)
122121rphalfcld 12484 . . . . . . 7 (𝜑 → ((𝑁↑2) / 2) ∈ ℝ+)
123 0le1 11201 . . . . . . . . 9 0 ≤ 1
124123a1i 11 . . . . . . . 8 (𝜑 → 0 ≤ 1)
12529, 32, 118, 124addge0d 11254 . . . . . . 7 (𝜑 → 0 ≤ (𝑅 + 1))
12615sqvald 13557 . . . . . . . . . 10 (𝜑 → (𝑁↑2) = (𝑁 · 𝑁))
127126oveq1d 7165 . . . . . . . . 9 (𝜑 → ((𝑁↑2) / 2) = ((𝑁 · 𝑁) / 2))
12831recnd 10707 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
129 2ne0 11778 . . . . . . . . . . 11 2 ≠ 0
130129a1i 11 . . . . . . . . . 10 (𝜑 → 2 ≠ 0)
13115, 15, 128, 130div23d 11491 . . . . . . . . 9 (𝜑 → ((𝑁 · 𝑁) / 2) = ((𝑁 / 2) · 𝑁))
132127, 131eqtrd 2793 . . . . . . . 8 (𝜑 → ((𝑁↑2) / 2) = ((𝑁 / 2) · 𝑁))
13344rehalfcld 11921 . . . . . . . . 9 (𝜑 → (𝑁 / 2) ∈ ℝ)
13444, 29resubcld 11106 . . . . . . . . 9 (𝜑 → (𝑁𝑅) ∈ ℝ)
13544, 32readdcld 10708 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℝ)
136 2rp 12435 . . . . . . . . . . 11 2 ∈ ℝ+
137136a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ+)
13810rpge0d 12476 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑁)
13944, 137, 138divge0d 12512 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑁 / 2))
14029, 44, 137lemuldiv2d 12522 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑅) ≤ 𝑁𝑅 ≤ (𝑁 / 2)))
14150, 140mpbid 235 . . . . . . . . . . 11 (𝜑𝑅 ≤ (𝑁 / 2))
142152halvesd 11920 . . . . . . . . . . . 12 (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) = 𝑁)
143133recnd 10707 . . . . . . . . . . . . 13 (𝜑 → (𝑁 / 2) ∈ ℂ)
14415, 143, 143subaddd 11053 . . . . . . . . . . . 12 (𝜑 → ((𝑁 − (𝑁 / 2)) = (𝑁 / 2) ↔ ((𝑁 / 2) + (𝑁 / 2)) = 𝑁))
145142, 144mpbird 260 . . . . . . . . . . 11 (𝜑 → (𝑁 − (𝑁 / 2)) = (𝑁 / 2))
146141, 145breqtrrd 5060 . . . . . . . . . 10 (𝜑𝑅 ≤ (𝑁 − (𝑁 / 2)))
14729, 44, 133, 146lesubd 11282 . . . . . . . . 9 (𝜑 → (𝑁 / 2) ≤ (𝑁𝑅))
14844lep1d 11609 . . . . . . . . 9 (𝜑𝑁 ≤ (𝑁 + 1))
149133, 134, 44, 135, 139, 138, 147, 148lemul12ad 11620 . . . . . . . 8 (𝜑 → ((𝑁 / 2) · 𝑁) ≤ ((𝑁𝑅) · (𝑁 + 1)))
150132, 149eqbrtrd 5054 . . . . . . 7 (𝜑 → ((𝑁↑2) / 2) ≤ ((𝑁𝑅) · (𝑁 + 1)))
151122, 116, 33, 125, 150lediv2ad 12494 . . . . . 6 (𝜑 → ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1))) ≤ ((𝑅 + 1) / ((𝑁↑2) / 2)))
1521peano2nnd 11691 . . . . . . . . 9 (𝜑 → (𝑅 + 1) ∈ ℕ)
153152nncnd 11690 . . . . . . . 8 (𝜑 → (𝑅 + 1) ∈ ℂ)
15435nncnd 11690 . . . . . . . 8 (𝜑 → (𝑁↑2) ∈ ℂ)
15535nnne0d 11724 . . . . . . . 8 (𝜑 → (𝑁↑2) ≠ 0)
156153, 154, 128, 155, 130divdiv2d 11486 . . . . . . 7 (𝜑 → ((𝑅 + 1) / ((𝑁↑2) / 2)) = (((𝑅 + 1) · 2) / (𝑁↑2)))
157153, 128mulcomd 10700 . . . . . . . 8 (𝜑 → ((𝑅 + 1) · 2) = (2 · (𝑅 + 1)))
158157oveq1d 7165 . . . . . . 7 (𝜑 → (((𝑅 + 1) · 2) / (𝑁↑2)) = ((2 · (𝑅 + 1)) / (𝑁↑2)))
159156, 158eqtr2d 2794 . . . . . 6 (𝜑 → ((2 · (𝑅 + 1)) / (𝑁↑2)) = ((𝑅 + 1) / ((𝑁↑2) / 2)))
160151, 159breqtrrd 5060 . . . . 5 (𝜑 → ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1))) ≤ ((2 · (𝑅 + 1)) / (𝑁↑2)))
161117, 36, 29, 118, 160lemul2ad 11618 . . . 4 (𝜑 → (𝑅 · ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))))
162115, 161eqbrtrrd 5056 . . 3 (𝜑 → ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))))
16328, 58, 37, 95, 162letrd 10835 . 2 (𝜑 → ((abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) + (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))))
16423, 28, 37, 38, 163letrd 10835 1 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2951  wral 3070  {crab 3074  cdif 3855   class class class wbr 5032  cfv 6335  (class class class)co 7150  cc 10573  cr 10574  0cc0 10575  1c1 10576   + caddc 10578   · cmul 10580   < clt 10713  cle 10714  cmin 10908   / cdiv 11335  cn 11674  2c2 11729  0cn0 11934  cz 12020  +crp 12430  cexp 13479  abscabs 14641  logclog 25245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ioc 12784  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-fac 13684  df-bc 13713  df-hash 13741  df-shft 14474  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-limsup 14876  df-clim 14893  df-rlim 14894  df-sum 15091  df-ef 15469  df-sin 15471  df-cos 15472  df-tan 15473  df-pi 15474  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-xrs 16833  df-qtop 16838  df-imas 16839  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023  df-mulg 18292  df-cntz 18514  df-cmn 18975  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-fbas 20163  df-fg 20164  df-cnfld 20167  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-ntr 21720  df-cls 21721  df-nei 21798  df-lp 21836  df-perf 21837  df-cn 21927  df-cnp 21928  df-haus 22015  df-cmp 22087  df-tx 22262  df-hmeo 22455  df-fil 22546  df-fm 22638  df-flim 22639  df-flf 22640  df-xms 23022  df-ms 23023  df-tms 23024  df-cncf 23579  df-limc 24565  df-dv 24566  df-log 25247
This theorem is referenced by:  lgamgulmlem5  25717
  Copyright terms: Public domain W3C validator