MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem3 Structured version   Visualization version   GIF version

Theorem lgamgulmlem3 26380
Description: Lemma for lgamgulm 26384. (Contributed by Mario Carneiro, 3-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.n (𝜑𝑁 ∈ ℕ)
lgamgulm.a (𝜑𝐴𝑈)
lgamgulm.l (𝜑 → (2 · 𝑅) ≤ 𝑁)
Assertion
Ref Expression
lgamgulmlem3 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑘,𝑅   𝐴,𝑘,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝑈(𝑥,𝑘)   𝑁(𝑘)

Proof of Theorem lgamgulmlem3
StepHypRef Expression
1 lgamgulm.r . . . . . . . 8 (𝜑𝑅 ∈ ℕ)
2 lgamgulm.u . . . . . . . 8 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
31, 2lgamgulmlem1 26378 . . . . . . 7 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
4 lgamgulm.a . . . . . . 7 (𝜑𝐴𝑈)
53, 4sseldd 3945 . . . . . 6 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
65eldifad 3922 . . . . 5 (𝜑𝐴 ∈ ℂ)
7 lgamgulm.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
87peano2nnd 12170 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℕ)
98nnrpd 12955 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℝ+)
107nnrpd 12955 . . . . . . . 8 (𝜑𝑁 ∈ ℝ+)
119, 10rpdivcld 12974 . . . . . . 7 (𝜑 → ((𝑁 + 1) / 𝑁) ∈ ℝ+)
1211relogcld 25978 . . . . . 6 (𝜑 → (log‘((𝑁 + 1) / 𝑁)) ∈ ℝ)
1312recnd 11183 . . . . 5 (𝜑 → (log‘((𝑁 + 1) / 𝑁)) ∈ ℂ)
146, 13mulcld 11175 . . . 4 (𝜑 → (𝐴 · (log‘((𝑁 + 1) / 𝑁))) ∈ ℂ)
157nncnd 12169 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
167nnne0d 12203 . . . . . . 7 (𝜑𝑁 ≠ 0)
176, 15, 16divcld 11931 . . . . . 6 (𝜑 → (𝐴 / 𝑁) ∈ ℂ)
18 1cnd 11150 . . . . . 6 (𝜑 → 1 ∈ ℂ)
1917, 18addcld 11174 . . . . 5 (𝜑 → ((𝐴 / 𝑁) + 1) ∈ ℂ)
205, 7dmgmdivn0 26377 . . . . 5 (𝜑 → ((𝐴 / 𝑁) + 1) ≠ 0)
2119, 20logcld 25926 . . . 4 (𝜑 → (log‘((𝐴 / 𝑁) + 1)) ∈ ℂ)
2214, 21subcld 11512 . . 3 (𝜑 → ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1))) ∈ ℂ)
2322abscld 15321 . 2 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ∈ ℝ)
2414, 17subcld 11512 . . . 4 (𝜑 → ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁)) ∈ ℂ)
2524abscld 15321 . . 3 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) ∈ ℝ)
2617, 21subcld 11512 . . . 4 (𝜑 → ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) ∈ ℂ)
2726abscld 15321 . . 3 (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ∈ ℝ)
2825, 27readdcld 11184 . 2 (𝜑 → ((abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) + (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))) ∈ ℝ)
291nnred 12168 . . 3 (𝜑𝑅 ∈ ℝ)
30 2re 12227 . . . . . 6 2 ∈ ℝ
3130a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ)
32 1red 11156 . . . . . 6 (𝜑 → 1 ∈ ℝ)
3329, 32readdcld 11184 . . . . 5 (𝜑 → (𝑅 + 1) ∈ ℝ)
3431, 33remulcld 11185 . . . 4 (𝜑 → (2 · (𝑅 + 1)) ∈ ℝ)
357nnsqcld 14147 . . . 4 (𝜑 → (𝑁↑2) ∈ ℕ)
3634, 35nndivred 12207 . . 3 (𝜑 → ((2 · (𝑅 + 1)) / (𝑁↑2)) ∈ ℝ)
3729, 36remulcld 11185 . 2 (𝜑 → (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))) ∈ ℝ)
3814, 21, 17abs3difd 15345 . 2 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ≤ ((abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) + (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))))
397nnrecred 12204 . . . . . 6 (𝜑 → (1 / 𝑁) ∈ ℝ)
408nnrecred 12204 . . . . . 6 (𝜑 → (1 / (𝑁 + 1)) ∈ ℝ)
4139, 40resubcld 11583 . . . . 5 (𝜑 → ((1 / 𝑁) − (1 / (𝑁 + 1))) ∈ ℝ)
4229, 41remulcld 11185 . . . 4 (𝜑 → (𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) ∈ ℝ)
4331, 29remulcld 11185 . . . . . . . . 9 (𝜑 → (2 · 𝑅) ∈ ℝ)
447nnred 12168 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
451nnrpd 12955 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℝ+)
4629, 45ltaddrpd 12990 . . . . . . . . . 10 (𝜑𝑅 < (𝑅 + 𝑅))
471nncnd 12169 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℂ)
48472timesd 12396 . . . . . . . . . 10 (𝜑 → (2 · 𝑅) = (𝑅 + 𝑅))
4946, 48breqtrrd 5133 . . . . . . . . 9 (𝜑𝑅 < (2 · 𝑅))
50 lgamgulm.l . . . . . . . . 9 (𝜑 → (2 · 𝑅) ≤ 𝑁)
5129, 43, 44, 49, 50ltletrd 11315 . . . . . . . 8 (𝜑𝑅 < 𝑁)
52 difrp 12953 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑅 < 𝑁 ↔ (𝑁𝑅) ∈ ℝ+))
5329, 44, 52syl2anc 584 . . . . . . . 8 (𝜑 → (𝑅 < 𝑁 ↔ (𝑁𝑅) ∈ ℝ+))
5451, 53mpbid 231 . . . . . . 7 (𝜑 → (𝑁𝑅) ∈ ℝ+)
5554rprecred 12968 . . . . . 6 (𝜑 → (1 / (𝑁𝑅)) ∈ ℝ)
5655, 39resubcld 11583 . . . . 5 (𝜑 → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℝ)
5729, 56remulcld 11185 . . . 4 (𝜑 → (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ∈ ℝ)
5842, 57readdcld 11184 . . 3 (𝜑 → ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))) ∈ ℝ)
596, 15, 16divrecd 11934 . . . . . . . . 9 (𝜑 → (𝐴 / 𝑁) = (𝐴 · (1 / 𝑁)))
6059oveq2d 7373 . . . . . . . 8 (𝜑 → ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁)) = ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 · (1 / 𝑁))))
6139recnd 11183 . . . . . . . . 9 (𝜑 → (1 / 𝑁) ∈ ℂ)
626, 13, 61subdid 11611 . . . . . . . 8 (𝜑 → (𝐴 · ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))) = ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 · (1 / 𝑁))))
6360, 62eqtr4d 2779 . . . . . . 7 (𝜑 → ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁)) = (𝐴 · ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))))
6463fveq2d 6846 . . . . . 6 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) = (abs‘(𝐴 · ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))))
6513, 61subcld 11512 . . . . . . 7 (𝜑 → ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)) ∈ ℂ)
666, 65absmuld 15339 . . . . . 6 (𝜑 → (abs‘(𝐴 · ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))) = ((abs‘𝐴) · (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))))
6764, 66eqtrd 2776 . . . . 5 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) = ((abs‘𝐴) · (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))))
686abscld 15321 . . . . . 6 (𝜑 → (abs‘𝐴) ∈ ℝ)
6965abscld 15321 . . . . . 6 (𝜑 → (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))) ∈ ℝ)
706absge0d 15329 . . . . . 6 (𝜑 → 0 ≤ (abs‘𝐴))
7165absge0d 15329 . . . . . 6 (𝜑 → 0 ≤ (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))))
72 fveq2 6842 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (abs‘𝑥) = (abs‘𝐴))
7372breq1d 5115 . . . . . . . . . . 11 (𝑥 = 𝐴 → ((abs‘𝑥) ≤ 𝑅 ↔ (abs‘𝐴) ≤ 𝑅))
74 fvoveq1 7380 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝐴 + 𝑘)))
7574breq2d 5117 . . . . . . . . . . . 12 (𝑥 = 𝐴 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7675ralbidv 3174 . . . . . . . . . . 11 (𝑥 = 𝐴 → (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7773, 76anbi12d 631 . . . . . . . . . 10 (𝑥 = 𝐴 → (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘)))))
7877, 2elrab2 3648 . . . . . . . . 9 (𝐴𝑈 ↔ (𝐴 ∈ ℂ ∧ ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘)))))
7978simprbi 497 . . . . . . . 8 (𝐴𝑈 → ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
804, 79syl 17 . . . . . . 7 (𝜑 → ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
8180simpld 495 . . . . . 6 (𝜑 → (abs‘𝐴) ≤ 𝑅)
829, 10relogdivd 25981 . . . . . . . . 9 (𝜑 → (log‘((𝑁 + 1) / 𝑁)) = ((log‘(𝑁 + 1)) − (log‘𝑁)))
83 logdifbnd 26343 . . . . . . . . . 10 (𝑁 ∈ ℝ+ → ((log‘(𝑁 + 1)) − (log‘𝑁)) ≤ (1 / 𝑁))
8410, 83syl 17 . . . . . . . . 9 (𝜑 → ((log‘(𝑁 + 1)) − (log‘𝑁)) ≤ (1 / 𝑁))
8582, 84eqbrtrd 5127 . . . . . . . 8 (𝜑 → (log‘((𝑁 + 1) / 𝑁)) ≤ (1 / 𝑁))
8612, 39, 85abssuble0d 15317 . . . . . . 7 (𝜑 → (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))) = ((1 / 𝑁) − (log‘((𝑁 + 1) / 𝑁))))
87 logdiflbnd 26344 . . . . . . . . . 10 (𝑁 ∈ ℝ+ → (1 / (𝑁 + 1)) ≤ ((log‘(𝑁 + 1)) − (log‘𝑁)))
8810, 87syl 17 . . . . . . . . 9 (𝜑 → (1 / (𝑁 + 1)) ≤ ((log‘(𝑁 + 1)) − (log‘𝑁)))
8988, 82breqtrrd 5133 . . . . . . . 8 (𝜑 → (1 / (𝑁 + 1)) ≤ (log‘((𝑁 + 1) / 𝑁)))
9040, 12, 39, 89lesub2dd 11772 . . . . . . 7 (𝜑 → ((1 / 𝑁) − (log‘((𝑁 + 1) / 𝑁))) ≤ ((1 / 𝑁) − (1 / (𝑁 + 1))))
9186, 90eqbrtrd 5127 . . . . . 6 (𝜑 → (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))) ≤ ((1 / 𝑁) − (1 / (𝑁 + 1))))
9268, 29, 69, 41, 70, 71, 81, 91lemul12ad 12097 . . . . 5 (𝜑 → ((abs‘𝐴) · (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))) ≤ (𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))))
9367, 92eqbrtrd 5127 . . . 4 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) ≤ (𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))))
941, 2, 7, 4, 50lgamgulmlem2 26379 . . . 4 (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
9525, 27, 42, 57, 93, 94le2addd 11774 . . 3 (𝜑 → ((abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) + (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))) ≤ ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
9615, 47subcld 11512 . . . . . . . 8 (𝜑 → (𝑁𝑅) ∈ ℂ)
9715, 18addcld 11174 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℂ)
9829, 51gtned 11290 . . . . . . . . 9 (𝜑𝑁𝑅)
9915, 47, 98subne0d 11521 . . . . . . . 8 (𝜑 → (𝑁𝑅) ≠ 0)
1008nnne0d 12203 . . . . . . . 8 (𝜑 → (𝑁 + 1) ≠ 0)
10196, 97, 99, 100subrecd 11986 . . . . . . 7 (𝜑 → ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1))) = (((𝑁 + 1) − (𝑁𝑅)) / ((𝑁𝑅) · (𝑁 + 1))))
10215, 18, 47pnncand 11551 . . . . . . . . 9 (𝜑 → ((𝑁 + 1) − (𝑁𝑅)) = (1 + 𝑅))
10318, 47, 102comraddd 11369 . . . . . . . 8 (𝜑 → ((𝑁 + 1) − (𝑁𝑅)) = (𝑅 + 1))
104103oveq1d 7372 . . . . . . 7 (𝜑 → (((𝑁 + 1) − (𝑁𝑅)) / ((𝑁𝑅) · (𝑁 + 1))) = ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1))))
105101, 104eqtr2d 2777 . . . . . 6 (𝜑 → ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1))) = ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1))))
106105oveq2d 7373 . . . . 5 (𝜑 → (𝑅 · ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1)))) = (𝑅 · ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1)))))
10797, 100reccld 11924 . . . . . . . 8 (𝜑 → (1 / (𝑁 + 1)) ∈ ℂ)
10896, 99reccld 11924 . . . . . . . 8 (𝜑 → (1 / (𝑁𝑅)) ∈ ℂ)
10961, 107, 108npncan3d 11548 . . . . . . 7 (𝜑 → (((1 / 𝑁) − (1 / (𝑁 + 1))) + ((1 / (𝑁𝑅)) − (1 / 𝑁))) = ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1))))
110109eqcomd 2742 . . . . . 6 (𝜑 → ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1))) = (((1 / 𝑁) − (1 / (𝑁 + 1))) + ((1 / (𝑁𝑅)) − (1 / 𝑁))))
111110oveq2d 7373 . . . . 5 (𝜑 → (𝑅 · ((1 / (𝑁𝑅)) − (1 / (𝑁 + 1)))) = (𝑅 · (((1 / 𝑁) − (1 / (𝑁 + 1))) + ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
11241recnd 11183 . . . . . 6 (𝜑 → ((1 / 𝑁) − (1 / (𝑁 + 1))) ∈ ℂ)
11356recnd 11183 . . . . . 6 (𝜑 → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℂ)
11447, 112, 113adddid 11179 . . . . 5 (𝜑 → (𝑅 · (((1 / 𝑁) − (1 / (𝑁 + 1))) + ((1 / (𝑁𝑅)) − (1 / 𝑁)))) = ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
115106, 111, 1143eqtrd 2780 . . . 4 (𝜑 → (𝑅 · ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1)))) = ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
11654, 9rpmulcld 12973 . . . . . 6 (𝜑 → ((𝑁𝑅) · (𝑁 + 1)) ∈ ℝ+)
11733, 116rerpdivcld 12988 . . . . 5 (𝜑 → ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1))) ∈ ℝ)
11845rpge0d 12961 . . . . 5 (𝜑 → 0 ≤ 𝑅)
119 2z 12535 . . . . . . . . . 10 2 ∈ ℤ
120119a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℤ)
12110, 120rpexpcld 14150 . . . . . . . 8 (𝜑 → (𝑁↑2) ∈ ℝ+)
122121rphalfcld 12969 . . . . . . 7 (𝜑 → ((𝑁↑2) / 2) ∈ ℝ+)
123 0le1 11678 . . . . . . . . 9 0 ≤ 1
124123a1i 11 . . . . . . . 8 (𝜑 → 0 ≤ 1)
12529, 32, 118, 124addge0d 11731 . . . . . . 7 (𝜑 → 0 ≤ (𝑅 + 1))
12615sqvald 14048 . . . . . . . . . 10 (𝜑 → (𝑁↑2) = (𝑁 · 𝑁))
127126oveq1d 7372 . . . . . . . . 9 (𝜑 → ((𝑁↑2) / 2) = ((𝑁 · 𝑁) / 2))
12831recnd 11183 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
129 2ne0 12257 . . . . . . . . . . 11 2 ≠ 0
130129a1i 11 . . . . . . . . . 10 (𝜑 → 2 ≠ 0)
13115, 15, 128, 130div23d 11968 . . . . . . . . 9 (𝜑 → ((𝑁 · 𝑁) / 2) = ((𝑁 / 2) · 𝑁))
132127, 131eqtrd 2776 . . . . . . . 8 (𝜑 → ((𝑁↑2) / 2) = ((𝑁 / 2) · 𝑁))
13344rehalfcld 12400 . . . . . . . . 9 (𝜑 → (𝑁 / 2) ∈ ℝ)
13444, 29resubcld 11583 . . . . . . . . 9 (𝜑 → (𝑁𝑅) ∈ ℝ)
13544, 32readdcld 11184 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℝ)
136 2rp 12920 . . . . . . . . . . 11 2 ∈ ℝ+
137136a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ+)
13810rpge0d 12961 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑁)
13944, 137, 138divge0d 12997 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑁 / 2))
14029, 44, 137lemuldiv2d 13007 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑅) ≤ 𝑁𝑅 ≤ (𝑁 / 2)))
14150, 140mpbid 231 . . . . . . . . . . 11 (𝜑𝑅 ≤ (𝑁 / 2))
142152halvesd 12399 . . . . . . . . . . . 12 (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) = 𝑁)
143133recnd 11183 . . . . . . . . . . . . 13 (𝜑 → (𝑁 / 2) ∈ ℂ)
14415, 143, 143subaddd 11530 . . . . . . . . . . . 12 (𝜑 → ((𝑁 − (𝑁 / 2)) = (𝑁 / 2) ↔ ((𝑁 / 2) + (𝑁 / 2)) = 𝑁))
145142, 144mpbird 256 . . . . . . . . . . 11 (𝜑 → (𝑁 − (𝑁 / 2)) = (𝑁 / 2))
146141, 145breqtrrd 5133 . . . . . . . . . 10 (𝜑𝑅 ≤ (𝑁 − (𝑁 / 2)))
14729, 44, 133, 146lesubd 11759 . . . . . . . . 9 (𝜑 → (𝑁 / 2) ≤ (𝑁𝑅))
14844lep1d 12086 . . . . . . . . 9 (𝜑𝑁 ≤ (𝑁 + 1))
149133, 134, 44, 135, 139, 138, 147, 148lemul12ad 12097 . . . . . . . 8 (𝜑 → ((𝑁 / 2) · 𝑁) ≤ ((𝑁𝑅) · (𝑁 + 1)))
150132, 149eqbrtrd 5127 . . . . . . 7 (𝜑 → ((𝑁↑2) / 2) ≤ ((𝑁𝑅) · (𝑁 + 1)))
151122, 116, 33, 125, 150lediv2ad 12979 . . . . . 6 (𝜑 → ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1))) ≤ ((𝑅 + 1) / ((𝑁↑2) / 2)))
1521peano2nnd 12170 . . . . . . . . 9 (𝜑 → (𝑅 + 1) ∈ ℕ)
153152nncnd 12169 . . . . . . . 8 (𝜑 → (𝑅 + 1) ∈ ℂ)
15435nncnd 12169 . . . . . . . 8 (𝜑 → (𝑁↑2) ∈ ℂ)
15535nnne0d 12203 . . . . . . . 8 (𝜑 → (𝑁↑2) ≠ 0)
156153, 154, 128, 155, 130divdiv2d 11963 . . . . . . 7 (𝜑 → ((𝑅 + 1) / ((𝑁↑2) / 2)) = (((𝑅 + 1) · 2) / (𝑁↑2)))
157153, 128mulcomd 11176 . . . . . . . 8 (𝜑 → ((𝑅 + 1) · 2) = (2 · (𝑅 + 1)))
158157oveq1d 7372 . . . . . . 7 (𝜑 → (((𝑅 + 1) · 2) / (𝑁↑2)) = ((2 · (𝑅 + 1)) / (𝑁↑2)))
159156, 158eqtr2d 2777 . . . . . 6 (𝜑 → ((2 · (𝑅 + 1)) / (𝑁↑2)) = ((𝑅 + 1) / ((𝑁↑2) / 2)))
160151, 159breqtrrd 5133 . . . . 5 (𝜑 → ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1))) ≤ ((2 · (𝑅 + 1)) / (𝑁↑2)))
161117, 36, 29, 118, 160lemul2ad 12095 . . . 4 (𝜑 → (𝑅 · ((𝑅 + 1) / ((𝑁𝑅) · (𝑁 + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))))
162115, 161eqbrtrrd 5129 . . 3 (𝜑 → ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))))
16328, 58, 37, 95, 162letrd 11312 . 2 (𝜑 → ((abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) + (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))))
16423, 28, 37, 38, 163letrd 11312 1 (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  {crab 3407  cdif 3907   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  +crp 12915  cexp 13967  abscabs 15119  logclog 25910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-tan 15954  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912
This theorem is referenced by:  lgamgulmlem5  26382
  Copyright terms: Public domain W3C validator