Proof of Theorem lgamgulmlem3
Step | Hyp | Ref
| Expression |
1 | | lgamgulm.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ ℕ) |
2 | | lgamgulm.u |
. . . . . . . 8
⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} |
3 | 1, 2 | lgamgulmlem1 26187 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ⊆ (ℂ ∖ (ℤ ∖
ℕ))) |
4 | | lgamgulm.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑈) |
5 | 3, 4 | sseldd 3923 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖
ℕ))) |
6 | 5 | eldifad 3900 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℂ) |
7 | | lgamgulm.n |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℕ) |
8 | 7 | peano2nnd 11999 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 + 1) ∈ ℕ) |
9 | 8 | nnrpd 12779 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 + 1) ∈
ℝ+) |
10 | 7 | nnrpd 12779 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈
ℝ+) |
11 | 9, 10 | rpdivcld 12798 |
. . . . . . 7
⊢ (𝜑 → ((𝑁 + 1) / 𝑁) ∈
ℝ+) |
12 | 11 | relogcld 25787 |
. . . . . 6
⊢ (𝜑 → (log‘((𝑁 + 1) / 𝑁)) ∈ ℝ) |
13 | 12 | recnd 11012 |
. . . . 5
⊢ (𝜑 → (log‘((𝑁 + 1) / 𝑁)) ∈ ℂ) |
14 | 6, 13 | mulcld 11004 |
. . . 4
⊢ (𝜑 → (𝐴 · (log‘((𝑁 + 1) / 𝑁))) ∈ ℂ) |
15 | 7 | nncnd 11998 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℂ) |
16 | 7 | nnne0d 12032 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ≠ 0) |
17 | 6, 15, 16 | divcld 11760 |
. . . . . 6
⊢ (𝜑 → (𝐴 / 𝑁) ∈ ℂ) |
18 | | 1cnd 10979 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℂ) |
19 | 17, 18 | addcld 11003 |
. . . . 5
⊢ (𝜑 → ((𝐴 / 𝑁) + 1) ∈ ℂ) |
20 | 5, 7 | dmgmdivn0 26186 |
. . . . 5
⊢ (𝜑 → ((𝐴 / 𝑁) + 1) ≠ 0) |
21 | 19, 20 | logcld 25735 |
. . . 4
⊢ (𝜑 → (log‘((𝐴 / 𝑁) + 1)) ∈ ℂ) |
22 | 14, 21 | subcld 11341 |
. . 3
⊢ (𝜑 → ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1))) ∈ ℂ) |
23 | 22 | abscld 15157 |
. 2
⊢ (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ∈ ℝ) |
24 | 14, 17 | subcld 11341 |
. . . 4
⊢ (𝜑 → ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁)) ∈ ℂ) |
25 | 24 | abscld 15157 |
. . 3
⊢ (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) ∈ ℝ) |
26 | 17, 21 | subcld 11341 |
. . . 4
⊢ (𝜑 → ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) ∈ ℂ) |
27 | 26 | abscld 15157 |
. . 3
⊢ (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ∈ ℝ) |
28 | 25, 27 | readdcld 11013 |
. 2
⊢ (𝜑 → ((abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) + (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))) ∈ ℝ) |
29 | 1 | nnred 11997 |
. . 3
⊢ (𝜑 → 𝑅 ∈ ℝ) |
30 | | 2re 12056 |
. . . . . 6
⊢ 2 ∈
ℝ |
31 | 30 | a1i 11 |
. . . . 5
⊢ (𝜑 → 2 ∈
ℝ) |
32 | | 1red 10985 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℝ) |
33 | 29, 32 | readdcld 11013 |
. . . . 5
⊢ (𝜑 → (𝑅 + 1) ∈ ℝ) |
34 | 31, 33 | remulcld 11014 |
. . . 4
⊢ (𝜑 → (2 · (𝑅 + 1)) ∈
ℝ) |
35 | 7 | nnsqcld 13968 |
. . . 4
⊢ (𝜑 → (𝑁↑2) ∈ ℕ) |
36 | 34, 35 | nndivred 12036 |
. . 3
⊢ (𝜑 → ((2 · (𝑅 + 1)) / (𝑁↑2)) ∈ ℝ) |
37 | 29, 36 | remulcld 11014 |
. 2
⊢ (𝜑 → (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2))) ∈ ℝ) |
38 | 14, 21, 17 | abs3difd 15181 |
. 2
⊢ (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ≤ ((abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) + (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))))) |
39 | 7 | nnrecred 12033 |
. . . . . 6
⊢ (𝜑 → (1 / 𝑁) ∈ ℝ) |
40 | 8 | nnrecred 12033 |
. . . . . 6
⊢ (𝜑 → (1 / (𝑁 + 1)) ∈ ℝ) |
41 | 39, 40 | resubcld 11412 |
. . . . 5
⊢ (𝜑 → ((1 / 𝑁) − (1 / (𝑁 + 1))) ∈ ℝ) |
42 | 29, 41 | remulcld 11014 |
. . . 4
⊢ (𝜑 → (𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) ∈ ℝ) |
43 | 31, 29 | remulcld 11014 |
. . . . . . . . 9
⊢ (𝜑 → (2 · 𝑅) ∈
ℝ) |
44 | 7 | nnred 11997 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℝ) |
45 | 1 | nnrpd 12779 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
46 | 29, 45 | ltaddrpd 12814 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 < (𝑅 + 𝑅)) |
47 | 1 | nncnd 11998 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ ℂ) |
48 | 47 | 2timesd 12225 |
. . . . . . . . . 10
⊢ (𝜑 → (2 · 𝑅) = (𝑅 + 𝑅)) |
49 | 46, 48 | breqtrrd 5103 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 < (2 · 𝑅)) |
50 | | lgamgulm.l |
. . . . . . . . 9
⊢ (𝜑 → (2 · 𝑅) ≤ 𝑁) |
51 | 29, 43, 44, 49, 50 | ltletrd 11144 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 < 𝑁) |
52 | | difrp 12777 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑅 < 𝑁 ↔ (𝑁 − 𝑅) ∈
ℝ+)) |
53 | 29, 44, 52 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝑅 < 𝑁 ↔ (𝑁 − 𝑅) ∈
ℝ+)) |
54 | 51, 53 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → (𝑁 − 𝑅) ∈
ℝ+) |
55 | 54 | rprecred 12792 |
. . . . . 6
⊢ (𝜑 → (1 / (𝑁 − 𝑅)) ∈ ℝ) |
56 | 55, 39 | resubcld 11412 |
. . . . 5
⊢ (𝜑 → ((1 / (𝑁 − 𝑅)) − (1 / 𝑁)) ∈ ℝ) |
57 | 29, 56 | remulcld 11014 |
. . . 4
⊢ (𝜑 → (𝑅 · ((1 / (𝑁 − 𝑅)) − (1 / 𝑁))) ∈ ℝ) |
58 | 42, 57 | readdcld 11013 |
. . 3
⊢ (𝜑 → ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁 − 𝑅)) − (1 / 𝑁)))) ∈ ℝ) |
59 | 6, 15, 16 | divrecd 11763 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 / 𝑁) = (𝐴 · (1 / 𝑁))) |
60 | 59 | oveq2d 7300 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁)) = ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 · (1 / 𝑁)))) |
61 | 39 | recnd 11012 |
. . . . . . . . 9
⊢ (𝜑 → (1 / 𝑁) ∈ ℂ) |
62 | 6, 13, 61 | subdid 11440 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 · ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))) = ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 · (1 / 𝑁)))) |
63 | 60, 62 | eqtr4d 2782 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁)) = (𝐴 · ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))) |
64 | 63 | fveq2d 6787 |
. . . . . 6
⊢ (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) = (abs‘(𝐴 · ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))))) |
65 | 13, 61 | subcld 11341 |
. . . . . . 7
⊢ (𝜑 → ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)) ∈ ℂ) |
66 | 6, 65 | absmuld 15175 |
. . . . . 6
⊢ (𝜑 → (abs‘(𝐴 · ((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁)))) = ((abs‘𝐴) · (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))))) |
67 | 64, 66 | eqtrd 2779 |
. . . . 5
⊢ (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) = ((abs‘𝐴) · (abs‘((log‘((𝑁 + 1) / 𝑁)) − (1 / 𝑁))))) |
68 | 6 | abscld 15157 |
. . . . . 6
⊢ (𝜑 → (abs‘𝐴) ∈
ℝ) |
69 | 65 | abscld 15157 |
. . . . . 6
⊢ (𝜑 →
(abs‘((log‘((𝑁
+ 1) / 𝑁)) − (1 /
𝑁))) ∈
ℝ) |
70 | 6 | absge0d 15165 |
. . . . . 6
⊢ (𝜑 → 0 ≤ (abs‘𝐴)) |
71 | 65 | absge0d 15165 |
. . . . . 6
⊢ (𝜑 → 0 ≤
(abs‘((log‘((𝑁
+ 1) / 𝑁)) − (1 /
𝑁)))) |
72 | | fveq2 6783 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐴 → (abs‘𝑥) = (abs‘𝐴)) |
73 | 72 | breq1d 5085 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → ((abs‘𝑥) ≤ 𝑅 ↔ (abs‘𝐴) ≤ 𝑅)) |
74 | | fvoveq1 7307 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐴 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝐴 + 𝑘))) |
75 | 74 | breq2d 5087 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐴 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘)))) |
76 | 75 | ralbidv 3113 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘)))) |
77 | 73, 76 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))) |
78 | 77, 2 | elrab2 3628 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑈 ↔ (𝐴 ∈ ℂ ∧ ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))) |
79 | 78 | simprbi 497 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑈 → ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘)))) |
80 | 4, 79 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘)))) |
81 | 80 | simpld 495 |
. . . . . 6
⊢ (𝜑 → (abs‘𝐴) ≤ 𝑅) |
82 | 9, 10 | relogdivd 25790 |
. . . . . . . . 9
⊢ (𝜑 → (log‘((𝑁 + 1) / 𝑁)) = ((log‘(𝑁 + 1)) − (log‘𝑁))) |
83 | | logdifbnd 26152 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℝ+
→ ((log‘(𝑁 + 1))
− (log‘𝑁)) ≤
(1 / 𝑁)) |
84 | 10, 83 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((log‘(𝑁 + 1)) − (log‘𝑁)) ≤ (1 / 𝑁)) |
85 | 82, 84 | eqbrtrd 5097 |
. . . . . . . 8
⊢ (𝜑 → (log‘((𝑁 + 1) / 𝑁)) ≤ (1 / 𝑁)) |
86 | 12, 39, 85 | abssuble0d 15153 |
. . . . . . 7
⊢ (𝜑 →
(abs‘((log‘((𝑁
+ 1) / 𝑁)) − (1 /
𝑁))) = ((1 / 𝑁) − (log‘((𝑁 + 1) / 𝑁)))) |
87 | | logdiflbnd 26153 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℝ+
→ (1 / (𝑁 + 1)) ≤
((log‘(𝑁 + 1))
− (log‘𝑁))) |
88 | 10, 87 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (1 / (𝑁 + 1)) ≤ ((log‘(𝑁 + 1)) − (log‘𝑁))) |
89 | 88, 82 | breqtrrd 5103 |
. . . . . . . 8
⊢ (𝜑 → (1 / (𝑁 + 1)) ≤ (log‘((𝑁 + 1) / 𝑁))) |
90 | 40, 12, 39, 89 | lesub2dd 11601 |
. . . . . . 7
⊢ (𝜑 → ((1 / 𝑁) − (log‘((𝑁 + 1) / 𝑁))) ≤ ((1 / 𝑁) − (1 / (𝑁 + 1)))) |
91 | 86, 90 | eqbrtrd 5097 |
. . . . . 6
⊢ (𝜑 →
(abs‘((log‘((𝑁
+ 1) / 𝑁)) − (1 /
𝑁))) ≤ ((1 / 𝑁) − (1 / (𝑁 + 1)))) |
92 | 68, 29, 69, 41, 70, 71, 81, 91 | lemul12ad 11926 |
. . . . 5
⊢ (𝜑 → ((abs‘𝐴) ·
(abs‘((log‘((𝑁
+ 1) / 𝑁)) − (1 /
𝑁)))) ≤ (𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1))))) |
93 | 67, 92 | eqbrtrd 5097 |
. . . 4
⊢ (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) ≤ (𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1))))) |
94 | 1, 2, 7, 4, 50 | lgamgulmlem2 26188 |
. . . 4
⊢ (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((1 / (𝑁 − 𝑅)) − (1 / 𝑁)))) |
95 | 25, 27, 42, 57, 93, 94 | le2addd 11603 |
. . 3
⊢ (𝜑 → ((abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) + (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))) ≤ ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁 − 𝑅)) − (1 / 𝑁))))) |
96 | 15, 47 | subcld 11341 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 − 𝑅) ∈ ℂ) |
97 | 15, 18 | addcld 11003 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 + 1) ∈ ℂ) |
98 | 29, 51 | gtned 11119 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ≠ 𝑅) |
99 | 15, 47, 98 | subne0d 11350 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 − 𝑅) ≠ 0) |
100 | 8 | nnne0d 12032 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 + 1) ≠ 0) |
101 | 96, 97, 99, 100 | subrecd 11815 |
. . . . . . 7
⊢ (𝜑 → ((1 / (𝑁 − 𝑅)) − (1 / (𝑁 + 1))) = (((𝑁 + 1) − (𝑁 − 𝑅)) / ((𝑁 − 𝑅) · (𝑁 + 1)))) |
102 | 15, 18, 47 | pnncand 11380 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁 + 1) − (𝑁 − 𝑅)) = (1 + 𝑅)) |
103 | 18, 47, 102 | comraddd 11198 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁 + 1) − (𝑁 − 𝑅)) = (𝑅 + 1)) |
104 | 103 | oveq1d 7299 |
. . . . . . 7
⊢ (𝜑 → (((𝑁 + 1) − (𝑁 − 𝑅)) / ((𝑁 − 𝑅) · (𝑁 + 1))) = ((𝑅 + 1) / ((𝑁 − 𝑅) · (𝑁 + 1)))) |
105 | 101, 104 | eqtr2d 2780 |
. . . . . 6
⊢ (𝜑 → ((𝑅 + 1) / ((𝑁 − 𝑅) · (𝑁 + 1))) = ((1 / (𝑁 − 𝑅)) − (1 / (𝑁 + 1)))) |
106 | 105 | oveq2d 7300 |
. . . . 5
⊢ (𝜑 → (𝑅 · ((𝑅 + 1) / ((𝑁 − 𝑅) · (𝑁 + 1)))) = (𝑅 · ((1 / (𝑁 − 𝑅)) − (1 / (𝑁 + 1))))) |
107 | 97, 100 | reccld 11753 |
. . . . . . . 8
⊢ (𝜑 → (1 / (𝑁 + 1)) ∈ ℂ) |
108 | 96, 99 | reccld 11753 |
. . . . . . . 8
⊢ (𝜑 → (1 / (𝑁 − 𝑅)) ∈ ℂ) |
109 | 61, 107, 108 | npncan3d 11377 |
. . . . . . 7
⊢ (𝜑 → (((1 / 𝑁) − (1 / (𝑁 + 1))) + ((1 / (𝑁 − 𝑅)) − (1 / 𝑁))) = ((1 / (𝑁 − 𝑅)) − (1 / (𝑁 + 1)))) |
110 | 109 | eqcomd 2745 |
. . . . . 6
⊢ (𝜑 → ((1 / (𝑁 − 𝑅)) − (1 / (𝑁 + 1))) = (((1 / 𝑁) − (1 / (𝑁 + 1))) + ((1 / (𝑁 − 𝑅)) − (1 / 𝑁)))) |
111 | 110 | oveq2d 7300 |
. . . . 5
⊢ (𝜑 → (𝑅 · ((1 / (𝑁 − 𝑅)) − (1 / (𝑁 + 1)))) = (𝑅 · (((1 / 𝑁) − (1 / (𝑁 + 1))) + ((1 / (𝑁 − 𝑅)) − (1 / 𝑁))))) |
112 | 41 | recnd 11012 |
. . . . . 6
⊢ (𝜑 → ((1 / 𝑁) − (1 / (𝑁 + 1))) ∈ ℂ) |
113 | 56 | recnd 11012 |
. . . . . 6
⊢ (𝜑 → ((1 / (𝑁 − 𝑅)) − (1 / 𝑁)) ∈ ℂ) |
114 | 47, 112, 113 | adddid 11008 |
. . . . 5
⊢ (𝜑 → (𝑅 · (((1 / 𝑁) − (1 / (𝑁 + 1))) + ((1 / (𝑁 − 𝑅)) − (1 / 𝑁)))) = ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁 − 𝑅)) − (1 / 𝑁))))) |
115 | 106, 111,
114 | 3eqtrd 2783 |
. . . 4
⊢ (𝜑 → (𝑅 · ((𝑅 + 1) / ((𝑁 − 𝑅) · (𝑁 + 1)))) = ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁 − 𝑅)) − (1 / 𝑁))))) |
116 | 54, 9 | rpmulcld 12797 |
. . . . . 6
⊢ (𝜑 → ((𝑁 − 𝑅) · (𝑁 + 1)) ∈
ℝ+) |
117 | 33, 116 | rerpdivcld 12812 |
. . . . 5
⊢ (𝜑 → ((𝑅 + 1) / ((𝑁 − 𝑅) · (𝑁 + 1))) ∈ ℝ) |
118 | 45 | rpge0d 12785 |
. . . . 5
⊢ (𝜑 → 0 ≤ 𝑅) |
119 | | 2z 12361 |
. . . . . . . . . 10
⊢ 2 ∈
ℤ |
120 | 119 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 2 ∈
ℤ) |
121 | 10, 120 | rpexpcld 13971 |
. . . . . . . 8
⊢ (𝜑 → (𝑁↑2) ∈
ℝ+) |
122 | 121 | rphalfcld 12793 |
. . . . . . 7
⊢ (𝜑 → ((𝑁↑2) / 2) ∈
ℝ+) |
123 | | 0le1 11507 |
. . . . . . . . 9
⊢ 0 ≤
1 |
124 | 123 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ 1) |
125 | 29, 32, 118, 124 | addge0d 11560 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ (𝑅 + 1)) |
126 | 15 | sqvald 13870 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁↑2) = (𝑁 · 𝑁)) |
127 | 126 | oveq1d 7299 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁↑2) / 2) = ((𝑁 · 𝑁) / 2)) |
128 | 31 | recnd 11012 |
. . . . . . . . . 10
⊢ (𝜑 → 2 ∈
ℂ) |
129 | | 2ne0 12086 |
. . . . . . . . . . 11
⊢ 2 ≠
0 |
130 | 129 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 2 ≠ 0) |
131 | 15, 15, 128, 130 | div23d 11797 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁 · 𝑁) / 2) = ((𝑁 / 2) · 𝑁)) |
132 | 127, 131 | eqtrd 2779 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁↑2) / 2) = ((𝑁 / 2) · 𝑁)) |
133 | 44 | rehalfcld 12229 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 / 2) ∈ ℝ) |
134 | 44, 29 | resubcld 11412 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 − 𝑅) ∈ ℝ) |
135 | 44, 32 | readdcld 11013 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 + 1) ∈ ℝ) |
136 | | 2rp 12744 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ+ |
137 | 136 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 2 ∈
ℝ+) |
138 | 10 | rpge0d 12785 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ 𝑁) |
139 | 44, 137, 138 | divge0d 12821 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ (𝑁 / 2)) |
140 | 29, 44, 137 | lemuldiv2d 12831 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((2 · 𝑅) ≤ 𝑁 ↔ 𝑅 ≤ (𝑁 / 2))) |
141 | 50, 140 | mpbid 231 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ≤ (𝑁 / 2)) |
142 | 15 | 2halvesd 12228 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) = 𝑁) |
143 | 133 | recnd 11012 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁 / 2) ∈ ℂ) |
144 | 15, 143, 143 | subaddd 11359 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑁 − (𝑁 / 2)) = (𝑁 / 2) ↔ ((𝑁 / 2) + (𝑁 / 2)) = 𝑁)) |
145 | 142, 144 | mpbird 256 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 − (𝑁 / 2)) = (𝑁 / 2)) |
146 | 141, 145 | breqtrrd 5103 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ≤ (𝑁 − (𝑁 / 2))) |
147 | 29, 44, 133, 146 | lesubd 11588 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 / 2) ≤ (𝑁 − 𝑅)) |
148 | 44 | lep1d 11915 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ≤ (𝑁 + 1)) |
149 | 133, 134,
44, 135, 139, 138, 147, 148 | lemul12ad 11926 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁 / 2) · 𝑁) ≤ ((𝑁 − 𝑅) · (𝑁 + 1))) |
150 | 132, 149 | eqbrtrd 5097 |
. . . . . . 7
⊢ (𝜑 → ((𝑁↑2) / 2) ≤ ((𝑁 − 𝑅) · (𝑁 + 1))) |
151 | 122, 116,
33, 125, 150 | lediv2ad 12803 |
. . . . . 6
⊢ (𝜑 → ((𝑅 + 1) / ((𝑁 − 𝑅) · (𝑁 + 1))) ≤ ((𝑅 + 1) / ((𝑁↑2) / 2))) |
152 | 1 | peano2nnd 11999 |
. . . . . . . . 9
⊢ (𝜑 → (𝑅 + 1) ∈ ℕ) |
153 | 152 | nncnd 11998 |
. . . . . . . 8
⊢ (𝜑 → (𝑅 + 1) ∈ ℂ) |
154 | 35 | nncnd 11998 |
. . . . . . . 8
⊢ (𝜑 → (𝑁↑2) ∈ ℂ) |
155 | 35 | nnne0d 12032 |
. . . . . . . 8
⊢ (𝜑 → (𝑁↑2) ≠ 0) |
156 | 153, 154,
128, 155, 130 | divdiv2d 11792 |
. . . . . . 7
⊢ (𝜑 → ((𝑅 + 1) / ((𝑁↑2) / 2)) = (((𝑅 + 1) · 2) / (𝑁↑2))) |
157 | 153, 128 | mulcomd 11005 |
. . . . . . . 8
⊢ (𝜑 → ((𝑅 + 1) · 2) = (2 · (𝑅 + 1))) |
158 | 157 | oveq1d 7299 |
. . . . . . 7
⊢ (𝜑 → (((𝑅 + 1) · 2) / (𝑁↑2)) = ((2 · (𝑅 + 1)) / (𝑁↑2))) |
159 | 156, 158 | eqtr2d 2780 |
. . . . . 6
⊢ (𝜑 → ((2 · (𝑅 + 1)) / (𝑁↑2)) = ((𝑅 + 1) / ((𝑁↑2) / 2))) |
160 | 151, 159 | breqtrrd 5103 |
. . . . 5
⊢ (𝜑 → ((𝑅 + 1) / ((𝑁 − 𝑅) · (𝑁 + 1))) ≤ ((2 · (𝑅 + 1)) / (𝑁↑2))) |
161 | 117, 36, 29, 118, 160 | lemul2ad 11924 |
. . . 4
⊢ (𝜑 → (𝑅 · ((𝑅 + 1) / ((𝑁 − 𝑅) · (𝑁 + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2)))) |
162 | 115, 161 | eqbrtrrd 5099 |
. . 3
⊢ (𝜑 → ((𝑅 · ((1 / 𝑁) − (1 / (𝑁 + 1)))) + (𝑅 · ((1 / (𝑁 − 𝑅)) − (1 / 𝑁)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2)))) |
163 | 28, 58, 37, 95, 162 | letrd 11141 |
. 2
⊢ (𝜑 → ((abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (𝐴 / 𝑁))) + (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2)))) |
164 | 23, 28, 37, 38, 163 | letrd 11141 |
1
⊢ (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2)))) |