| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupmnf | Structured version Visualization version GIF version | ||
| Description: The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to an upper interval of real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| limsupmnf.j | ⊢ Ⅎ𝑗𝐹 |
| limsupmnf.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| limsupmnf.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
| Ref | Expression |
|---|---|
| limsupmnf | ⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupmnf.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 2 | limsupmnf.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
| 3 | eqid 2737 | . . 3 ⊢ (𝑖 ∈ ℝ ↦ sup((𝐹 “ (𝑖[,)+∞)), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup((𝐹 “ (𝑖[,)+∞)), ℝ*, < )) | |
| 4 | 1, 2, 3 | limsupmnflem 45735 | . 2 ⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦))) |
| 5 | breq2 5147 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑙) ≤ 𝑦 ↔ (𝐹‘𝑙) ≤ 𝑥)) | |
| 6 | 5 | imbi2d 340 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥))) |
| 7 | 6 | ralbidv 3178 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥))) |
| 8 | 7 | rexbidv 3179 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥))) |
| 9 | breq1 5146 | . . . . . . . . . 10 ⊢ (𝑖 = 𝑘 → (𝑖 ≤ 𝑙 ↔ 𝑘 ≤ 𝑙)) | |
| 10 | 9 | imbi1d 341 | . . . . . . . . 9 ⊢ (𝑖 = 𝑘 → ((𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥))) |
| 11 | 10 | ralbidv 3178 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ ∀𝑙 ∈ 𝐴 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥))) |
| 12 | nfv 1914 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗 𝑘 ≤ 𝑙 | |
| 13 | limsupmnf.j | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝐹 | |
| 14 | nfcv 2905 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝑙 | |
| 15 | 13, 14 | nffv 6916 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗(𝐹‘𝑙) |
| 16 | nfcv 2905 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗 ≤ | |
| 17 | nfcv 2905 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗𝑥 | |
| 18 | 15, 16, 17 | nfbr 5190 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗(𝐹‘𝑙) ≤ 𝑥 |
| 19 | 12, 18 | nfim 1896 | . . . . . . . . . 10 ⊢ Ⅎ𝑗(𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) |
| 20 | nfv 1914 | . . . . . . . . . 10 ⊢ Ⅎ𝑙(𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) | |
| 21 | breq2 5147 | . . . . . . . . . . 11 ⊢ (𝑙 = 𝑗 → (𝑘 ≤ 𝑙 ↔ 𝑘 ≤ 𝑗)) | |
| 22 | fveq2 6906 | . . . . . . . . . . . 12 ⊢ (𝑙 = 𝑗 → (𝐹‘𝑙) = (𝐹‘𝑗)) | |
| 23 | 22 | breq1d 5153 | . . . . . . . . . . 11 ⊢ (𝑙 = 𝑗 → ((𝐹‘𝑙) ≤ 𝑥 ↔ (𝐹‘𝑗) ≤ 𝑥)) |
| 24 | 21, 23 | imbi12d 344 | . . . . . . . . . 10 ⊢ (𝑙 = 𝑗 → ((𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
| 25 | 19, 20, 24 | cbvralw 3306 | . . . . . . . . 9 ⊢ (∀𝑙 ∈ 𝐴 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
| 26 | 25 | a1i 11 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (∀𝑙 ∈ 𝐴 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
| 27 | 11, 26 | bitrd 279 | . . . . . . 7 ⊢ (𝑖 = 𝑘 → (∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
| 28 | 27 | cbvrexvw 3238 | . . . . . 6 ⊢ (∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
| 29 | 28 | a1i 11 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
| 30 | 8, 29 | bitrd 279 | . . . 4 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
| 31 | 30 | cbvralvw 3237 | . . 3 ⊢ (∀𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
| 32 | 31 | a1i 11 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
| 33 | 4, 32 | bitrd 279 | 1 ⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Ⅎwnfc 2890 ∀wral 3061 ∃wrex 3070 ⊆ wss 3951 class class class wbr 5143 ↦ cmpt 5225 “ cima 5688 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 supcsup 9480 ℝcr 11154 +∞cpnf 11292 -∞cmnf 11293 ℝ*cxr 11294 < clt 11295 ≤ cle 11296 [,)cico 13389 lim supclsp 15506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-ico 13393 df-limsup 15507 |
| This theorem is referenced by: limsupre2lem 45739 limsupmnfuzlem 45741 |
| Copyright terms: Public domain | W3C validator |