![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupmnf | Structured version Visualization version GIF version |
Description: The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to an upper interval of real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupmnf.j | ⊢ Ⅎ𝑗𝐹 |
limsupmnf.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
limsupmnf.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
Ref | Expression |
---|---|
limsupmnf | ⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupmnf.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | limsupmnf.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
3 | eqid 2771 | . . 3 ⊢ (𝑖 ∈ ℝ ↦ sup((𝐹 “ (𝑖[,)+∞)), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup((𝐹 “ (𝑖[,)+∞)), ℝ*, < )) | |
4 | 1, 2, 3 | limsupmnflem 41464 | . 2 ⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦))) |
5 | breq2 4929 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑙) ≤ 𝑦 ↔ (𝐹‘𝑙) ≤ 𝑥)) | |
6 | 5 | imbi2d 333 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥))) |
7 | 6 | ralbidv 3140 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥))) |
8 | 7 | rexbidv 3235 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥))) |
9 | breq1 4928 | . . . . . . . . . 10 ⊢ (𝑖 = 𝑘 → (𝑖 ≤ 𝑙 ↔ 𝑘 ≤ 𝑙)) | |
10 | 9 | imbi1d 334 | . . . . . . . . 9 ⊢ (𝑖 = 𝑘 → ((𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥))) |
11 | 10 | ralbidv 3140 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ ∀𝑙 ∈ 𝐴 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥))) |
12 | nfv 1874 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗 𝑘 ≤ 𝑙 | |
13 | limsupmnf.j | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝐹 | |
14 | nfcv 2925 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝑙 | |
15 | 13, 14 | nffv 6506 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗(𝐹‘𝑙) |
16 | nfcv 2925 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗 ≤ | |
17 | nfcv 2925 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗𝑥 | |
18 | 15, 16, 17 | nfbr 4972 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗(𝐹‘𝑙) ≤ 𝑥 |
19 | 12, 18 | nfim 1860 | . . . . . . . . . 10 ⊢ Ⅎ𝑗(𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) |
20 | nfv 1874 | . . . . . . . . . 10 ⊢ Ⅎ𝑙(𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) | |
21 | breq2 4929 | . . . . . . . . . . 11 ⊢ (𝑙 = 𝑗 → (𝑘 ≤ 𝑙 ↔ 𝑘 ≤ 𝑗)) | |
22 | fveq2 6496 | . . . . . . . . . . . 12 ⊢ (𝑙 = 𝑗 → (𝐹‘𝑙) = (𝐹‘𝑗)) | |
23 | 22 | breq1d 4935 | . . . . . . . . . . 11 ⊢ (𝑙 = 𝑗 → ((𝐹‘𝑙) ≤ 𝑥 ↔ (𝐹‘𝑗) ≤ 𝑥)) |
24 | 21, 23 | imbi12d 337 | . . . . . . . . . 10 ⊢ (𝑙 = 𝑗 → ((𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
25 | 19, 20, 24 | cbvral 3372 | . . . . . . . . 9 ⊢ (∀𝑙 ∈ 𝐴 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
26 | 25 | a1i 11 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (∀𝑙 ∈ 𝐴 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
27 | 11, 26 | bitrd 271 | . . . . . . 7 ⊢ (𝑖 = 𝑘 → (∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
28 | 27 | cbvrexv 3377 | . . . . . 6 ⊢ (∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
29 | 28 | a1i 11 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
30 | 8, 29 | bitrd 271 | . . . 4 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
31 | 30 | cbvralv 3376 | . . 3 ⊢ (∀𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
32 | 31 | a1i 11 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
33 | 4, 32 | bitrd 271 | 1 ⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1508 Ⅎwnfc 2909 ∀wral 3081 ∃wrex 3082 ⊆ wss 3822 class class class wbr 4925 ↦ cmpt 5004 “ cima 5406 ⟶wf 6181 ‘cfv 6185 (class class class)co 6974 supcsup 8697 ℝcr 10332 +∞cpnf 10469 -∞cmnf 10470 ℝ*cxr 10471 < clt 10472 ≤ cle 10473 [,)cico 12554 lim supclsp 14686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-pre-sup 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-po 5322 df-so 5323 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-sup 8699 df-inf 8700 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-ico 12558 df-limsup 14687 |
This theorem is referenced by: limsupre2lem 41468 limsupmnfuzlem 41470 |
Copyright terms: Public domain | W3C validator |