![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupmnf | Structured version Visualization version GIF version |
Description: The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to an upper interval of real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupmnf.j | ⊢ Ⅎ𝑗𝐹 |
limsupmnf.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
limsupmnf.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
Ref | Expression |
---|---|
limsupmnf | ⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupmnf.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | limsupmnf.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
3 | eqid 2740 | . . 3 ⊢ (𝑖 ∈ ℝ ↦ sup((𝐹 “ (𝑖[,)+∞)), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup((𝐹 “ (𝑖[,)+∞)), ℝ*, < )) | |
4 | 1, 2, 3 | limsupmnflem 45641 | . 2 ⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦))) |
5 | breq2 5170 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑙) ≤ 𝑦 ↔ (𝐹‘𝑙) ≤ 𝑥)) | |
6 | 5 | imbi2d 340 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥))) |
7 | 6 | ralbidv 3184 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥))) |
8 | 7 | rexbidv 3185 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥))) |
9 | breq1 5169 | . . . . . . . . . 10 ⊢ (𝑖 = 𝑘 → (𝑖 ≤ 𝑙 ↔ 𝑘 ≤ 𝑙)) | |
10 | 9 | imbi1d 341 | . . . . . . . . 9 ⊢ (𝑖 = 𝑘 → ((𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥))) |
11 | 10 | ralbidv 3184 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ ∀𝑙 ∈ 𝐴 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥))) |
12 | nfv 1913 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗 𝑘 ≤ 𝑙 | |
13 | limsupmnf.j | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝐹 | |
14 | nfcv 2908 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝑙 | |
15 | 13, 14 | nffv 6930 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗(𝐹‘𝑙) |
16 | nfcv 2908 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗 ≤ | |
17 | nfcv 2908 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗𝑥 | |
18 | 15, 16, 17 | nfbr 5213 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗(𝐹‘𝑙) ≤ 𝑥 |
19 | 12, 18 | nfim 1895 | . . . . . . . . . 10 ⊢ Ⅎ𝑗(𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) |
20 | nfv 1913 | . . . . . . . . . 10 ⊢ Ⅎ𝑙(𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) | |
21 | breq2 5170 | . . . . . . . . . . 11 ⊢ (𝑙 = 𝑗 → (𝑘 ≤ 𝑙 ↔ 𝑘 ≤ 𝑗)) | |
22 | fveq2 6920 | . . . . . . . . . . . 12 ⊢ (𝑙 = 𝑗 → (𝐹‘𝑙) = (𝐹‘𝑗)) | |
23 | 22 | breq1d 5176 | . . . . . . . . . . 11 ⊢ (𝑙 = 𝑗 → ((𝐹‘𝑙) ≤ 𝑥 ↔ (𝐹‘𝑗) ≤ 𝑥)) |
24 | 21, 23 | imbi12d 344 | . . . . . . . . . 10 ⊢ (𝑙 = 𝑗 → ((𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
25 | 19, 20, 24 | cbvralw 3312 | . . . . . . . . 9 ⊢ (∀𝑙 ∈ 𝐴 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
26 | 25 | a1i 11 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (∀𝑙 ∈ 𝐴 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
27 | 11, 26 | bitrd 279 | . . . . . . 7 ⊢ (𝑖 = 𝑘 → (∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
28 | 27 | cbvrexvw 3244 | . . . . . 6 ⊢ (∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
29 | 28 | a1i 11 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
30 | 8, 29 | bitrd 279 | . . . 4 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
31 | 30 | cbvralvw 3243 | . . 3 ⊢ (∀𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
32 | 31 | a1i 11 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
33 | 4, 32 | bitrd 279 | 1 ⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 Ⅎwnfc 2893 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 class class class wbr 5166 ↦ cmpt 5249 “ cima 5703 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 supcsup 9509 ℝcr 11183 +∞cpnf 11321 -∞cmnf 11322 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 [,)cico 13409 lim supclsp 15516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-ico 13413 df-limsup 15517 |
This theorem is referenced by: limsupre2lem 45645 limsupmnfuzlem 45647 |
Copyright terms: Public domain | W3C validator |