Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupmnf | Structured version Visualization version GIF version |
Description: The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to an upper interval of real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupmnf.j | ⊢ Ⅎ𝑗𝐹 |
limsupmnf.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
limsupmnf.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
Ref | Expression |
---|---|
limsupmnf | ⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupmnf.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | limsupmnf.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
3 | eqid 2736 | . . 3 ⊢ (𝑖 ∈ ℝ ↦ sup((𝐹 “ (𝑖[,)+∞)), ℝ*, < )) = (𝑖 ∈ ℝ ↦ sup((𝐹 “ (𝑖[,)+∞)), ℝ*, < )) | |
4 | 1, 2, 3 | limsupmnflem 43490 | . 2 ⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦))) |
5 | breq2 5085 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑙) ≤ 𝑦 ↔ (𝐹‘𝑙) ≤ 𝑥)) | |
6 | 5 | imbi2d 341 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥))) |
7 | 6 | ralbidv 3171 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥))) |
8 | 7 | rexbidv 3172 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥))) |
9 | breq1 5084 | . . . . . . . . . 10 ⊢ (𝑖 = 𝑘 → (𝑖 ≤ 𝑙 ↔ 𝑘 ≤ 𝑙)) | |
10 | 9 | imbi1d 342 | . . . . . . . . 9 ⊢ (𝑖 = 𝑘 → ((𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥))) |
11 | 10 | ralbidv 3171 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ ∀𝑙 ∈ 𝐴 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥))) |
12 | nfv 1915 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗 𝑘 ≤ 𝑙 | |
13 | limsupmnf.j | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝐹 | |
14 | nfcv 2905 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑗𝑙 | |
15 | 13, 14 | nffv 6814 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗(𝐹‘𝑙) |
16 | nfcv 2905 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗 ≤ | |
17 | nfcv 2905 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑗𝑥 | |
18 | 15, 16, 17 | nfbr 5128 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗(𝐹‘𝑙) ≤ 𝑥 |
19 | 12, 18 | nfim 1897 | . . . . . . . . . 10 ⊢ Ⅎ𝑗(𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) |
20 | nfv 1915 | . . . . . . . . . 10 ⊢ Ⅎ𝑙(𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) | |
21 | breq2 5085 | . . . . . . . . . . 11 ⊢ (𝑙 = 𝑗 → (𝑘 ≤ 𝑙 ↔ 𝑘 ≤ 𝑗)) | |
22 | fveq2 6804 | . . . . . . . . . . . 12 ⊢ (𝑙 = 𝑗 → (𝐹‘𝑙) = (𝐹‘𝑗)) | |
23 | 22 | breq1d 5091 | . . . . . . . . . . 11 ⊢ (𝑙 = 𝑗 → ((𝐹‘𝑙) ≤ 𝑥 ↔ (𝐹‘𝑗) ≤ 𝑥)) |
24 | 21, 23 | imbi12d 345 | . . . . . . . . . 10 ⊢ (𝑙 = 𝑗 → ((𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
25 | 19, 20, 24 | cbvralw 3286 | . . . . . . . . 9 ⊢ (∀𝑙 ∈ 𝐴 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
26 | 25 | a1i 11 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (∀𝑙 ∈ 𝐴 (𝑘 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
27 | 11, 26 | bitrd 279 | . . . . . . 7 ⊢ (𝑖 = 𝑘 → (∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
28 | 27 | cbvrexvw 3223 | . . . . . 6 ⊢ (∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
29 | 28 | a1i 11 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
30 | 8, 29 | bitrd 279 | . . . 4 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
31 | 30 | cbvralvw 3222 | . . 3 ⊢ (∀𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
32 | 31 | a1i 11 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐴 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝑦) ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
33 | 4, 32 | bitrd 279 | 1 ⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 Ⅎwnfc 2885 ∀wral 3062 ∃wrex 3071 ⊆ wss 3892 class class class wbr 5081 ↦ cmpt 5164 “ cima 5603 ⟶wf 6454 ‘cfv 6458 (class class class)co 7307 supcsup 9247 ℝcr 10920 +∞cpnf 11056 -∞cmnf 11057 ℝ*cxr 11058 < clt 11059 ≤ cle 11060 [,)cico 13131 lim supclsp 15228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-sup 9249 df-inf 9250 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-ico 13135 df-limsup 15229 |
This theorem is referenced by: limsupre2lem 43494 limsupmnfuzlem 43496 |
Copyright terms: Public domain | W3C validator |