MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ledivmul2 Structured version   Visualization version   GIF version

Theorem ledivmul2 12145
Description: 'Less than or equal to' relationship between division and multiplication. (Contributed by NM, 9-Dec-2005.)
Assertion
Ref Expression
ledivmul2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) ≤ 𝐵𝐴 ≤ (𝐵 · 𝐶)))

Proof of Theorem ledivmul2
StepHypRef Expression
1 ledivmul 12142 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) ≤ 𝐵𝐴 ≤ (𝐶 · 𝐵)))
2 recn 11248 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
3 recn 11248 . . . . . 6 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
4 mulcom 11244 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
52, 3, 4syl2an 594 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
65adantrr 715 . . . 4 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
763adant1 1127 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
87breq2d 5165 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ (𝐵 · 𝐶) ↔ 𝐴 ≤ (𝐶 · 𝐵)))
91, 8bitr4d 281 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) ≤ 𝐵𝐴 ≤ (𝐵 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099   class class class wbr 5153  (class class class)co 7424  cc 11156  cr 11157  0cc0 11158   · cmul 11163   < clt 11298  cle 11299   / cdiv 11921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922
This theorem is referenced by:  ledivmul2d  13124  nmoi  24736  ipcau2  25253  dyaddisjlem  25615  opnmbllem  25621  mbfi1fseqlem6  25741  itg2monolem3  25773  dvlip  26017  ostth3  27667  axpaschlem  28874  nmblolbii  30732  nmbdoplbi  31957  nmcoplbi  31961  nmbdfnlbi  31982  nmcfnlbi  31985  nmopcoi  32028  opnmbllem0  37357  elbigolo1  47945
  Copyright terms: Public domain W3C validator