MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaddsub2d Structured version   Visualization version   GIF version

Theorem ltaddsub2d 11321
Description: 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
ltadd1d.3 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
ltaddsub2d (𝜑 → ((𝐴 + 𝐵) < 𝐶𝐵 < (𝐶𝐴)))

Proof of Theorem ltaddsub2d
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnegd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 ltadd1d.3 . 2 (𝜑𝐶 ∈ ℝ)
4 ltaddsub2 11195 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶𝐵 < (𝐶𝐴)))
51, 2, 3, 4syl3anc 1372 1 (𝜑 → ((𝐴 + 𝐵) < 𝐶𝐵 < (𝐶𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wcel 2114   class class class wbr 5030  (class class class)co 7172  cr 10616   + caddc 10620   < clt 10755  cmin 10950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481  ax-resscn 10674  ax-1cn 10675  ax-icn 10676  ax-addcl 10677  ax-addrcl 10678  ax-mulcl 10679  ax-mulrcl 10680  ax-mulcom 10681  ax-addass 10682  ax-mulass 10683  ax-distr 10684  ax-i2m1 10685  ax-1ne0 10686  ax-1rid 10687  ax-rnegex 10688  ax-rrecex 10689  ax-cnre 10690  ax-pre-lttri 10691  ax-pre-lttrn 10692  ax-pre-ltadd 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-po 5442  df-so 5443  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7129  df-ov 7175  df-oprab 7176  df-mpo 7177  df-er 8322  df-en 8558  df-dom 8559  df-sdom 8560  df-pnf 10757  df-mnf 10758  df-xr 10759  df-ltxr 10760  df-le 10761  df-sub 10952  df-neg 10953
This theorem is referenced by:  rpnnen1lem5  12465  m1modge3gt1  13379  discr1  13694  difsqpwdvds  16325  lhop1lem  24767  dvcvx  24774  coe1mul3  24854  chtub  25950  itg2gt0cn  35477  fourierdlem42  43254  fourierdlem64  43275  fourierdlem82  43293  iunhoiioolem  43777  vonioolem1  43782  zm1nn  44357  sgoldbeven3prm  44798  ltsubadd2b  45420  difmodm1lt  45431  2itscp  45690
  Copyright terms: Public domain W3C validator