MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1modge3gt1 Structured version   Visualization version   GIF version

Theorem m1modge3gt1 13889
Description: Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021.)
Assertion
Ref Expression
m1modge3gt1 (𝑀 ∈ (ℤ‘3) → 1 < (-1 mod 𝑀))

Proof of Theorem m1modge3gt1
StepHypRef Expression
1 1p1e2 12312 . . . 4 (1 + 1) = 2
2 2p1e3 12329 . . . . . 6 (2 + 1) = 3
3 eluzle 12812 . . . . . 6 (𝑀 ∈ (ℤ‘3) → 3 ≤ 𝑀)
42, 3eqbrtrid 5144 . . . . 5 (𝑀 ∈ (ℤ‘3) → (2 + 1) ≤ 𝑀)
5 2z 12571 . . . . . 6 2 ∈ ℤ
6 eluzelz 12809 . . . . . 6 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℤ)
7 zltp1le 12589 . . . . . 6 ((2 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀))
85, 6, 7sylancr 587 . . . . 5 (𝑀 ∈ (ℤ‘3) → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀))
94, 8mpbird 257 . . . 4 (𝑀 ∈ (ℤ‘3) → 2 < 𝑀)
101, 9eqbrtrid 5144 . . 3 (𝑀 ∈ (ℤ‘3) → (1 + 1) < 𝑀)
11 1red 11181 . . . 4 (𝑀 ∈ (ℤ‘3) → 1 ∈ ℝ)
12 eluzelre 12810 . . . 4 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℝ)
1311, 11, 12ltaddsub2d 11785 . . 3 (𝑀 ∈ (ℤ‘3) → ((1 + 1) < 𝑀 ↔ 1 < (𝑀 − 1)))
1410, 13mpbid 232 . 2 (𝑀 ∈ (ℤ‘3) → 1 < (𝑀 − 1))
15 eluz3nn 12854 . . 3 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℕ)
16 m1modnnsub1 13888 . . 3 (𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1))
1715, 16syl 17 . 2 (𝑀 ∈ (ℤ‘3) → (-1 mod 𝑀) = (𝑀 − 1))
1814, 17breqtrrd 5137 1 (𝑀 ∈ (ℤ‘3) → 1 < (-1 mod 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109   class class class wbr 5109  cfv 6513  (class class class)co 7389  1c1 11075   + caddc 11077   < clt 11214  cle 11215  cmin 11411  -cneg 11412  cn 12187  2c2 12242  3c3 12243  cz 12535  cuz 12799   mod cmo 13837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-sup 9399  df-inf 9400  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-n0 12449  df-z 12536  df-uz 12800  df-rp 12958  df-fl 13760  df-mod 13838
This theorem is referenced by:  gausslemma2dlem0i  27281
  Copyright terms: Public domain W3C validator