MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1modge3gt1 Structured version   Visualization version   GIF version

Theorem m1modge3gt1 13830
Description: Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021.)
Assertion
Ref Expression
m1modge3gt1 (𝑀 ∈ (ℤ‘3) → 1 < (-1 mod 𝑀))

Proof of Theorem m1modge3gt1
StepHypRef Expression
1 1p1e2 12285 . . . 4 (1 + 1) = 2
2 2p1e3 12302 . . . . . 6 (2 + 1) = 3
3 eluzle 12783 . . . . . 6 (𝑀 ∈ (ℤ‘3) → 3 ≤ 𝑀)
42, 3eqbrtrid 5145 . . . . 5 (𝑀 ∈ (ℤ‘3) → (2 + 1) ≤ 𝑀)
5 2z 12542 . . . . . 6 2 ∈ ℤ
6 eluzelz 12780 . . . . . 6 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℤ)
7 zltp1le 12560 . . . . . 6 ((2 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀))
85, 6, 7sylancr 588 . . . . 5 (𝑀 ∈ (ℤ‘3) → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀))
94, 8mpbird 257 . . . 4 (𝑀 ∈ (ℤ‘3) → 2 < 𝑀)
101, 9eqbrtrid 5145 . . 3 (𝑀 ∈ (ℤ‘3) → (1 + 1) < 𝑀)
11 1red 11163 . . . 4 (𝑀 ∈ (ℤ‘3) → 1 ∈ ℝ)
12 eluzelre 12781 . . . 4 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℝ)
1311, 11, 12ltaddsub2d 11763 . . 3 (𝑀 ∈ (ℤ‘3) → ((1 + 1) < 𝑀 ↔ 1 < (𝑀 − 1)))
1410, 13mpbid 231 . 2 (𝑀 ∈ (ℤ‘3) → 1 < (𝑀 − 1))
15 eluzge3nn 12822 . . 3 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℕ)
16 m1modnnsub1 13829 . . 3 (𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1))
1715, 16syl 17 . 2 (𝑀 ∈ (ℤ‘3) → (-1 mod 𝑀) = (𝑀 − 1))
1814, 17breqtrrd 5138 1 (𝑀 ∈ (ℤ‘3) → 1 < (-1 mod 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wcel 2107   class class class wbr 5110  cfv 6501  (class class class)co 7362  1c1 11059   + caddc 11061   < clt 11196  cle 11197  cmin 11392  -cneg 11393  cn 12160  2c2 12215  3c3 12216  cz 12506  cuz 12770   mod cmo 13781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-sup 9385  df-inf 9386  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-z 12507  df-uz 12771  df-rp 12923  df-fl 13704  df-mod 13782
This theorem is referenced by:  gausslemma2dlem0i  26728
  Copyright terms: Public domain W3C validator