![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > m1modge3gt1 | Structured version Visualization version GIF version |
Description: Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021.) |
Ref | Expression |
---|---|
m1modge3gt1 | ⊢ (𝑀 ∈ (ℤ≥‘3) → 1 < (-1 mod 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1p1e2 12362 | . . . 4 ⊢ (1 + 1) = 2 | |
2 | 2p1e3 12379 | . . . . . 6 ⊢ (2 + 1) = 3 | |
3 | eluzle 12860 | . . . . . 6 ⊢ (𝑀 ∈ (ℤ≥‘3) → 3 ≤ 𝑀) | |
4 | 2, 3 | eqbrtrid 5179 | . . . . 5 ⊢ (𝑀 ∈ (ℤ≥‘3) → (2 + 1) ≤ 𝑀) |
5 | 2z 12619 | . . . . . 6 ⊢ 2 ∈ ℤ | |
6 | eluzelz 12857 | . . . . . 6 ⊢ (𝑀 ∈ (ℤ≥‘3) → 𝑀 ∈ ℤ) | |
7 | zltp1le 12637 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀)) | |
8 | 5, 6, 7 | sylancr 585 | . . . . 5 ⊢ (𝑀 ∈ (ℤ≥‘3) → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀)) |
9 | 4, 8 | mpbird 256 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘3) → 2 < 𝑀) |
10 | 1, 9 | eqbrtrid 5179 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘3) → (1 + 1) < 𝑀) |
11 | 1red 11240 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘3) → 1 ∈ ℝ) | |
12 | eluzelre 12858 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘3) → 𝑀 ∈ ℝ) | |
13 | 11, 11, 12 | ltaddsub2d 11840 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘3) → ((1 + 1) < 𝑀 ↔ 1 < (𝑀 − 1))) |
14 | 10, 13 | mpbid 231 | . 2 ⊢ (𝑀 ∈ (ℤ≥‘3) → 1 < (𝑀 − 1)) |
15 | eluzge3nn 12899 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘3) → 𝑀 ∈ ℕ) | |
16 | m1modnnsub1 13909 | . . 3 ⊢ (𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1)) | |
17 | 15, 16 | syl 17 | . 2 ⊢ (𝑀 ∈ (ℤ≥‘3) → (-1 mod 𝑀) = (𝑀 − 1)) |
18 | 14, 17 | breqtrrd 5172 | 1 ⊢ (𝑀 ∈ (ℤ≥‘3) → 1 < (-1 mod 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 class class class wbr 5144 ‘cfv 6543 (class class class)co 7413 1c1 11134 + caddc 11136 < clt 11273 ≤ cle 11274 − cmin 11469 -cneg 11470 ℕcn 12237 2c2 12292 3c3 12293 ℤcz 12583 ℤ≥cuz 12847 mod cmo 13861 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9460 df-inf 9461 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-n0 12498 df-z 12584 df-uz 12848 df-rp 13002 df-fl 13784 df-mod 13862 |
This theorem is referenced by: gausslemma2dlem0i 27310 |
Copyright terms: Public domain | W3C validator |