![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > m1modge3gt1 | Structured version Visualization version GIF version |
Description: Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021.) |
Ref | Expression |
---|---|
m1modge3gt1 | ⊢ (𝑀 ∈ (ℤ≥‘3) → 1 < (-1 mod 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1p1e2 12420 | . . . 4 ⊢ (1 + 1) = 2 | |
2 | 2p1e3 12437 | . . . . . 6 ⊢ (2 + 1) = 3 | |
3 | eluzle 12918 | . . . . . 6 ⊢ (𝑀 ∈ (ℤ≥‘3) → 3 ≤ 𝑀) | |
4 | 2, 3 | eqbrtrid 5201 | . . . . 5 ⊢ (𝑀 ∈ (ℤ≥‘3) → (2 + 1) ≤ 𝑀) |
5 | 2z 12677 | . . . . . 6 ⊢ 2 ∈ ℤ | |
6 | eluzelz 12915 | . . . . . 6 ⊢ (𝑀 ∈ (ℤ≥‘3) → 𝑀 ∈ ℤ) | |
7 | zltp1le 12695 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀)) | |
8 | 5, 6, 7 | sylancr 586 | . . . . 5 ⊢ (𝑀 ∈ (ℤ≥‘3) → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀)) |
9 | 4, 8 | mpbird 257 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘3) → 2 < 𝑀) |
10 | 1, 9 | eqbrtrid 5201 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘3) → (1 + 1) < 𝑀) |
11 | 1red 11293 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘3) → 1 ∈ ℝ) | |
12 | eluzelre 12916 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘3) → 𝑀 ∈ ℝ) | |
13 | 11, 11, 12 | ltaddsub2d 11893 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘3) → ((1 + 1) < 𝑀 ↔ 1 < (𝑀 − 1))) |
14 | 10, 13 | mpbid 232 | . 2 ⊢ (𝑀 ∈ (ℤ≥‘3) → 1 < (𝑀 − 1)) |
15 | eluzge3nn 12957 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘3) → 𝑀 ∈ ℕ) | |
16 | m1modnnsub1 13970 | . . 3 ⊢ (𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1)) | |
17 | 15, 16 | syl 17 | . 2 ⊢ (𝑀 ∈ (ℤ≥‘3) → (-1 mod 𝑀) = (𝑀 − 1)) |
18 | 14, 17 | breqtrrd 5194 | 1 ⊢ (𝑀 ∈ (ℤ≥‘3) → 1 < (-1 mod 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6575 (class class class)co 7450 1c1 11187 + caddc 11189 < clt 11326 ≤ cle 11327 − cmin 11522 -cneg 11523 ℕcn 12295 2c2 12350 3c3 12351 ℤcz 12641 ℤ≥cuz 12905 mod cmo 13922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 ax-pre-sup 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-er 8765 df-en 9006 df-dom 9007 df-sdom 9008 df-sup 9513 df-inf 9514 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-div 11950 df-nn 12296 df-2 12358 df-3 12359 df-n0 12556 df-z 12642 df-uz 12906 df-rp 13060 df-fl 13845 df-mod 13923 |
This theorem is referenced by: gausslemma2dlem0i 27428 |
Copyright terms: Public domain | W3C validator |