MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsqpwdvds Structured version   Visualization version   GIF version

Theorem difsqpwdvds 16213
Description: If the difference of two squares is a power of a prime, the prime divides twice the second squared number. (Contributed by AV, 13-Aug-2021.)
Assertion
Ref Expression
difsqpwdvds (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶𝐷) = ((𝐴↑2) − (𝐵↑2)) → 𝐶 ∥ (2 · 𝐵)))

Proof of Theorem difsqpwdvds
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0cn 11895 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
2 nn0cn 11895 . . . . . . 7 (𝐵 ∈ ℕ0𝐵 ∈ ℂ)
31, 2anim12i 615 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
433adant3 1129 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
5 subsq 13568 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
64, 5syl 17 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
76adantr 484 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
87eqeq2d 2809 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶𝐷) = ((𝐴↑2) − (𝐵↑2)) ↔ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))))
9 simprl 770 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → 𝐶 ∈ ℙ)
10 nn0z 11993 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
11 nn0z 11993 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
1210, 11anim12i 615 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
13 zaddcl 12010 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
1412, 13syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℤ)
15143adant3 1129 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 + 𝐵) ∈ ℤ)
16 nn0re 11894 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
1716adantl 485 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐵 ∈ ℝ)
18 1red 10631 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 1 ∈ ℝ)
19 nn0re 11894 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
2019adantr 484 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐴 ∈ ℝ)
2117, 18, 20ltaddsub2d 11230 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐵 + 1) < 𝐴 ↔ 1 < (𝐴𝐵)))
22 simpr 488 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐵 ∈ ℕ0)
2320, 22, 183jca 1125 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 1 ∈ ℝ))
24 difgtsumgt 11938 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 1 ∈ ℝ) → (1 < (𝐴𝐵) → 1 < (𝐴 + 𝐵)))
2523, 24syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (1 < (𝐴𝐵) → 1 < (𝐴 + 𝐵)))
2621, 25sylbid 243 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐵 + 1) < 𝐴 → 1 < (𝐴 + 𝐵)))
27263impia 1114 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → 1 < (𝐴 + 𝐵))
28 eluz2b1 12307 . . . . . . . . 9 ((𝐴 + 𝐵) ∈ (ℤ‘2) ↔ ((𝐴 + 𝐵) ∈ ℤ ∧ 1 < (𝐴 + 𝐵)))
2915, 27, 28sylanbrc 586 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 + 𝐵) ∈ (ℤ‘2))
3029adantr 484 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐴 + 𝐵) ∈ (ℤ‘2))
31 simprr 772 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → 𝐷 ∈ ℕ0)
329, 30, 313jca 1125 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0))
3332adantr 484 . . . . 5 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐶 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0))
34 zsubcl 12012 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
3513, 34jca 515 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ))
3612, 35syl 17 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ))
37363adant3 1129 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ))
38 dvdsmul1 15623 . . . . . . . 8 (((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
3937, 38syl 17 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
4039ad2antrr 725 . . . . . 6 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
41 breq2 5034 . . . . . . 7 ((𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵)) → ((𝐴 + 𝐵) ∥ (𝐶𝐷) ↔ (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵))))
4241adantl 485 . . . . . 6 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → ((𝐴 + 𝐵) ∥ (𝐶𝐷) ↔ (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵))))
4340, 42mpbird 260 . . . . 5 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐴 + 𝐵) ∥ (𝐶𝐷))
44 dvdsprmpweqnn 16211 . . . . 5 ((𝐶 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0) → ((𝐴 + 𝐵) ∥ (𝐶𝐷) → ∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚)))
4533, 43, 44sylc 65 . . . 4 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → ∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚))
46 prmz 16009 . . . . . . . . . . 11 (𝐶 ∈ ℙ → 𝐶 ∈ ℤ)
47 iddvdsexp 15625 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝑚 ∈ ℕ) → 𝐶 ∥ (𝐶𝑚))
4846, 47sylan 583 . . . . . . . . . 10 ((𝐶 ∈ ℙ ∧ 𝑚 ∈ ℕ) → 𝐶 ∥ (𝐶𝑚))
49 breq2 5034 . . . . . . . . . 10 ((𝐴 + 𝐵) = (𝐶𝑚) → (𝐶 ∥ (𝐴 + 𝐵) ↔ 𝐶 ∥ (𝐶𝑚)))
5048, 49syl5ibrcom 250 . . . . . . . . 9 ((𝐶 ∈ ℙ ∧ 𝑚 ∈ ℕ) → ((𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (𝐴 + 𝐵)))
5150rexlimdva 3243 . . . . . . . 8 (𝐶 ∈ ℙ → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (𝐴 + 𝐵)))
5251adantr 484 . . . . . . 7 ((𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0) → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (𝐴 + 𝐵)))
5352adantl 485 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (𝐴 + 𝐵)))
5453adantr 484 . . . . 5 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (𝐴 + 𝐵)))
5512, 34syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ ℤ)
56553adant3 1129 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴𝐵) ∈ ℤ)
5721biimp3a 1466 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → 1 < (𝐴𝐵))
58 eluz2b1 12307 . . . . . . . . . . 11 ((𝐴𝐵) ∈ (ℤ‘2) ↔ ((𝐴𝐵) ∈ ℤ ∧ 1 < (𝐴𝐵)))
5956, 57, 58sylanbrc 586 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴𝐵) ∈ (ℤ‘2))
6059adantr 484 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐴𝐵) ∈ (ℤ‘2))
619, 60, 313jca 1125 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∈ ℙ ∧ (𝐴𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0))
6261adantr 484 . . . . . . 7 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐶 ∈ ℙ ∧ (𝐴𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0))
63 dvdsmul2 15624 . . . . . . . . . 10 (((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
6437, 63syl 17 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
6564ad2antrr 725 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
66 breq2 5034 . . . . . . . . 9 ((𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵)) → ((𝐴𝐵) ∥ (𝐶𝐷) ↔ (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵))))
6766adantl 485 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → ((𝐴𝐵) ∥ (𝐶𝐷) ↔ (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵))))
6865, 67mpbird 260 . . . . . . 7 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐴𝐵) ∥ (𝐶𝐷))
69 dvdsprmpweqnn 16211 . . . . . . 7 ((𝐶 ∈ ℙ ∧ (𝐴𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0) → ((𝐴𝐵) ∥ (𝐶𝐷) → ∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛)))
7062, 68, 69sylc 65 . . . . . 6 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → ∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛))
71 iddvdsexp 15625 . . . . . . . . . . . . 13 ((𝐶 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝐶 ∥ (𝐶𝑛))
7246, 71sylan 583 . . . . . . . . . . . 12 ((𝐶 ∈ ℙ ∧ 𝑛 ∈ ℕ) → 𝐶 ∥ (𝐶𝑛))
73 breq2 5034 . . . . . . . . . . . 12 ((𝐴𝐵) = (𝐶𝑛) → (𝐶 ∥ (𝐴𝐵) ↔ 𝐶 ∥ (𝐶𝑛)))
7472, 73syl5ibrcom 250 . . . . . . . . . . 11 ((𝐶 ∈ ℙ ∧ 𝑛 ∈ ℕ) → ((𝐴𝐵) = (𝐶𝑛) → 𝐶 ∥ (𝐴𝐵)))
7574rexlimdva 3243 . . . . . . . . . 10 (𝐶 ∈ ℙ → (∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛) → 𝐶 ∥ (𝐴𝐵)))
7675adantr 484 . . . . . . . . 9 ((𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0) → (∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛) → 𝐶 ∥ (𝐴𝐵)))
7776adantl 485 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛) → 𝐶 ∥ (𝐴𝐵)))
7877adantr 484 . . . . . . 7 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛) → 𝐶 ∥ (𝐴𝐵)))
7946adantr 484 . . . . . . . . . . . . 13 ((𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0) → 𝐶 ∈ ℤ)
8037, 79anim12ci 616 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∈ ℤ ∧ ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ)))
81 3anass 1092 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) ↔ (𝐶 ∈ ℤ ∧ ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ)))
8280, 81sylibr 237 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ))
83 dvds2sub 15636 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → ((𝐶 ∥ (𝐴 + 𝐵) ∧ 𝐶 ∥ (𝐴𝐵)) → 𝐶 ∥ ((𝐴 + 𝐵) − (𝐴𝐵))))
8482, 83syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶 ∥ (𝐴 + 𝐵) ∧ 𝐶 ∥ (𝐴𝐵)) → 𝐶 ∥ ((𝐴 + 𝐵) − (𝐴𝐵))))
8513ad2ant1 1130 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → 𝐴 ∈ ℂ)
8623ad2ant2 1131 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → 𝐵 ∈ ℂ)
8785, 86, 86pnncand 11025 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → ((𝐴 + 𝐵) − (𝐴𝐵)) = (𝐵 + 𝐵))
8822timesd 11868 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℕ0 → (2 · 𝐵) = (𝐵 + 𝐵))
8988eqcomd 2804 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ0 → (𝐵 + 𝐵) = (2 · 𝐵))
90893ad2ant2 1131 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐵 + 𝐵) = (2 · 𝐵))
9187, 90eqtrd 2833 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → ((𝐴 + 𝐵) − (𝐴𝐵)) = (2 · 𝐵))
9291breq2d 5042 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐶 ∥ ((𝐴 + 𝐵) − (𝐴𝐵)) ↔ 𝐶 ∥ (2 · 𝐵)))
9392biimpd 232 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐶 ∥ ((𝐴 + 𝐵) − (𝐴𝐵)) → 𝐶 ∥ (2 · 𝐵)))
9493adantr 484 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∥ ((𝐴 + 𝐵) − (𝐴𝐵)) → 𝐶 ∥ (2 · 𝐵)))
9584, 94syld 47 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶 ∥ (𝐴 + 𝐵) ∧ 𝐶 ∥ (𝐴𝐵)) → 𝐶 ∥ (2 · 𝐵)))
9695expcomd 420 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∥ (𝐴𝐵) → (𝐶 ∥ (𝐴 + 𝐵) → 𝐶 ∥ (2 · 𝐵))))
9796adantr 484 . . . . . . 7 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐶 ∥ (𝐴𝐵) → (𝐶 ∥ (𝐴 + 𝐵) → 𝐶 ∥ (2 · 𝐵))))
9878, 97syld 47 . . . . . 6 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛) → (𝐶 ∥ (𝐴 + 𝐵) → 𝐶 ∥ (2 · 𝐵))))
9970, 98mpd 15 . . . . 5 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐶 ∥ (𝐴 + 𝐵) → 𝐶 ∥ (2 · 𝐵)))
10054, 99syld 47 . . . 4 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (2 · 𝐵)))
10145, 100mpd 15 . . 3 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → 𝐶 ∥ (2 · 𝐵))
102101ex 416 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵)) → 𝐶 ∥ (2 · 𝐵)))
1038, 102sylbid 243 1 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶𝐷) = ((𝐴↑2) − (𝐵↑2)) → 𝐶 ∥ (2 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3107   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cmin 10859  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  cexp 13425  cdvds 15599  cprime 16005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-fz 12886  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834  df-prm 16006  df-pc 16164
This theorem is referenced by:  lighneallem2  44124
  Copyright terms: Public domain W3C validator