MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsqpwdvds Structured version   Visualization version   GIF version

Theorem difsqpwdvds 15969
Description: If the difference of two squares is a power of a prime, the prime divides twice the second squared number. (Contributed by AV, 13-Aug-2021.)
Assertion
Ref Expression
difsqpwdvds (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶𝐷) = ((𝐴↑2) − (𝐵↑2)) → 𝐶 ∥ (2 · 𝐵)))

Proof of Theorem difsqpwdvds
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0cn 11636 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
2 nn0cn 11636 . . . . . . 7 (𝐵 ∈ ℕ0𝐵 ∈ ℂ)
31, 2anim12i 606 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
433adant3 1166 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
5 subsq 13273 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
64, 5syl 17 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
76adantr 474 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
87eqeq2d 2835 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶𝐷) = ((𝐴↑2) − (𝐵↑2)) ↔ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))))
9 simprl 787 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → 𝐶 ∈ ℙ)
10 nn0z 11735 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
11 nn0z 11735 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
1210, 11anim12i 606 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
13 zaddcl 11752 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
1412, 13syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℤ)
15143adant3 1166 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 + 𝐵) ∈ ℤ)
16 nn0re 11635 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
1716adantl 475 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐵 ∈ ℝ)
18 1red 10364 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 1 ∈ ℝ)
19 nn0re 11635 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
2019adantr 474 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐴 ∈ ℝ)
2117, 18, 20ltaddsub2d 10960 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐵 + 1) < 𝐴 ↔ 1 < (𝐴𝐵)))
22 simpr 479 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐵 ∈ ℕ0)
2320, 22, 183jca 1162 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 1 ∈ ℝ))
24 difgtsumgt 11680 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 1 ∈ ℝ) → (1 < (𝐴𝐵) → 1 < (𝐴 + 𝐵)))
2523, 24syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (1 < (𝐴𝐵) → 1 < (𝐴 + 𝐵)))
2621, 25sylbid 232 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐵 + 1) < 𝐴 → 1 < (𝐴 + 𝐵)))
27263impia 1149 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → 1 < (𝐴 + 𝐵))
28 eluz2b1 12049 . . . . . . . . 9 ((𝐴 + 𝐵) ∈ (ℤ‘2) ↔ ((𝐴 + 𝐵) ∈ ℤ ∧ 1 < (𝐴 + 𝐵)))
2915, 27, 28sylanbrc 578 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 + 𝐵) ∈ (ℤ‘2))
3029adantr 474 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐴 + 𝐵) ∈ (ℤ‘2))
31 simprr 789 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → 𝐷 ∈ ℕ0)
329, 30, 313jca 1162 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0))
3332adantr 474 . . . . 5 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐶 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0))
34 zsubcl 11754 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
3513, 34jca 507 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ))
3612, 35syl 17 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ))
37363adant3 1166 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ))
38 dvdsmul1 15387 . . . . . . . 8 (((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
3937, 38syl 17 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
4039ad2antrr 717 . . . . . 6 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
41 breq2 4879 . . . . . . 7 ((𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵)) → ((𝐴 + 𝐵) ∥ (𝐶𝐷) ↔ (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵))))
4241adantl 475 . . . . . 6 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → ((𝐴 + 𝐵) ∥ (𝐶𝐷) ↔ (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵))))
4340, 42mpbird 249 . . . . 5 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐴 + 𝐵) ∥ (𝐶𝐷))
44 dvdsprmpweqnn 15967 . . . . 5 ((𝐶 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0) → ((𝐴 + 𝐵) ∥ (𝐶𝐷) → ∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚)))
4533, 43, 44sylc 65 . . . 4 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → ∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚))
46 prmz 15768 . . . . . . . . . . 11 (𝐶 ∈ ℙ → 𝐶 ∈ ℤ)
47 iddvdsexp 15389 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝑚 ∈ ℕ) → 𝐶 ∥ (𝐶𝑚))
4846, 47sylan 575 . . . . . . . . . 10 ((𝐶 ∈ ℙ ∧ 𝑚 ∈ ℕ) → 𝐶 ∥ (𝐶𝑚))
49 breq2 4879 . . . . . . . . . 10 ((𝐴 + 𝐵) = (𝐶𝑚) → (𝐶 ∥ (𝐴 + 𝐵) ↔ 𝐶 ∥ (𝐶𝑚)))
5048, 49syl5ibrcom 239 . . . . . . . . 9 ((𝐶 ∈ ℙ ∧ 𝑚 ∈ ℕ) → ((𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (𝐴 + 𝐵)))
5150rexlimdva 3240 . . . . . . . 8 (𝐶 ∈ ℙ → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (𝐴 + 𝐵)))
5251adantr 474 . . . . . . 7 ((𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0) → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (𝐴 + 𝐵)))
5352adantl 475 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (𝐴 + 𝐵)))
5453adantr 474 . . . . 5 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (𝐴 + 𝐵)))
5512, 34syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ ℤ)
56553adant3 1166 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴𝐵) ∈ ℤ)
5721biimp3a 1597 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → 1 < (𝐴𝐵))
58 eluz2b1 12049 . . . . . . . . . . 11 ((𝐴𝐵) ∈ (ℤ‘2) ↔ ((𝐴𝐵) ∈ ℤ ∧ 1 < (𝐴𝐵)))
5956, 57, 58sylanbrc 578 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴𝐵) ∈ (ℤ‘2))
6059adantr 474 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐴𝐵) ∈ (ℤ‘2))
619, 60, 313jca 1162 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∈ ℙ ∧ (𝐴𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0))
6261adantr 474 . . . . . . 7 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐶 ∈ ℙ ∧ (𝐴𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0))
63 dvdsmul2 15388 . . . . . . . . . 10 (((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
6437, 63syl 17 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
6564ad2antrr 717 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
66 breq2 4879 . . . . . . . . 9 ((𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵)) → ((𝐴𝐵) ∥ (𝐶𝐷) ↔ (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵))))
6766adantl 475 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → ((𝐴𝐵) ∥ (𝐶𝐷) ↔ (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵))))
6865, 67mpbird 249 . . . . . . 7 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐴𝐵) ∥ (𝐶𝐷))
69 dvdsprmpweqnn 15967 . . . . . . 7 ((𝐶 ∈ ℙ ∧ (𝐴𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0) → ((𝐴𝐵) ∥ (𝐶𝐷) → ∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛)))
7062, 68, 69sylc 65 . . . . . 6 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → ∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛))
71 iddvdsexp 15389 . . . . . . . . . . . . 13 ((𝐶 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝐶 ∥ (𝐶𝑛))
7246, 71sylan 575 . . . . . . . . . . . 12 ((𝐶 ∈ ℙ ∧ 𝑛 ∈ ℕ) → 𝐶 ∥ (𝐶𝑛))
73 breq2 4879 . . . . . . . . . . . 12 ((𝐴𝐵) = (𝐶𝑛) → (𝐶 ∥ (𝐴𝐵) ↔ 𝐶 ∥ (𝐶𝑛)))
7472, 73syl5ibrcom 239 . . . . . . . . . . 11 ((𝐶 ∈ ℙ ∧ 𝑛 ∈ ℕ) → ((𝐴𝐵) = (𝐶𝑛) → 𝐶 ∥ (𝐴𝐵)))
7574rexlimdva 3240 . . . . . . . . . 10 (𝐶 ∈ ℙ → (∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛) → 𝐶 ∥ (𝐴𝐵)))
7675adantr 474 . . . . . . . . 9 ((𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0) → (∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛) → 𝐶 ∥ (𝐴𝐵)))
7776adantl 475 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛) → 𝐶 ∥ (𝐴𝐵)))
7877adantr 474 . . . . . . 7 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛) → 𝐶 ∥ (𝐴𝐵)))
7946adantr 474 . . . . . . . . . . . . 13 ((𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0) → 𝐶 ∈ ℤ)
8037, 79anim12ci 607 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∈ ℤ ∧ ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ)))
81 3anass 1120 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) ↔ (𝐶 ∈ ℤ ∧ ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ)))
8280, 81sylibr 226 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ))
83 dvds2sub 15400 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → ((𝐶 ∥ (𝐴 + 𝐵) ∧ 𝐶 ∥ (𝐴𝐵)) → 𝐶 ∥ ((𝐴 + 𝐵) − (𝐴𝐵))))
8482, 83syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶 ∥ (𝐴 + 𝐵) ∧ 𝐶 ∥ (𝐴𝐵)) → 𝐶 ∥ ((𝐴 + 𝐵) − (𝐴𝐵))))
8513ad2ant1 1167 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → 𝐴 ∈ ℂ)
8623ad2ant2 1168 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → 𝐵 ∈ ℂ)
8785, 86, 86pnncand 10759 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → ((𝐴 + 𝐵) − (𝐴𝐵)) = (𝐵 + 𝐵))
8822timesd 11608 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℕ0 → (2 · 𝐵) = (𝐵 + 𝐵))
8988eqcomd 2831 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ0 → (𝐵 + 𝐵) = (2 · 𝐵))
90893ad2ant2 1168 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐵 + 𝐵) = (2 · 𝐵))
9187, 90eqtrd 2861 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → ((𝐴 + 𝐵) − (𝐴𝐵)) = (2 · 𝐵))
9291breq2d 4887 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐶 ∥ ((𝐴 + 𝐵) − (𝐴𝐵)) ↔ 𝐶 ∥ (2 · 𝐵)))
9392biimpd 221 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐶 ∥ ((𝐴 + 𝐵) − (𝐴𝐵)) → 𝐶 ∥ (2 · 𝐵)))
9493adantr 474 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∥ ((𝐴 + 𝐵) − (𝐴𝐵)) → 𝐶 ∥ (2 · 𝐵)))
9584, 94syld 47 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶 ∥ (𝐴 + 𝐵) ∧ 𝐶 ∥ (𝐴𝐵)) → 𝐶 ∥ (2 · 𝐵)))
9695expcomd 408 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∥ (𝐴𝐵) → (𝐶 ∥ (𝐴 + 𝐵) → 𝐶 ∥ (2 · 𝐵))))
9796adantr 474 . . . . . . 7 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐶 ∥ (𝐴𝐵) → (𝐶 ∥ (𝐴 + 𝐵) → 𝐶 ∥ (2 · 𝐵))))
9878, 97syld 47 . . . . . 6 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛) → (𝐶 ∥ (𝐴 + 𝐵) → 𝐶 ∥ (2 · 𝐵))))
9970, 98mpd 15 . . . . 5 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐶 ∥ (𝐴 + 𝐵) → 𝐶 ∥ (2 · 𝐵)))
10054, 99syld 47 . . . 4 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (2 · 𝐵)))
10145, 100mpd 15 . . 3 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → 𝐶 ∥ (2 · 𝐵))
102101ex 403 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵)) → 𝐶 ∥ (2 · 𝐵)))
1038, 102sylbid 232 1 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶𝐷) = ((𝐴↑2) − (𝐵↑2)) → 𝐶 ∥ (2 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  wrex 3118   class class class wbr 4875  cfv 6127  (class class class)co 6910  cc 10257  cr 10258  1c1 10260   + caddc 10262   · cmul 10264   < clt 10398  cmin 10592  cn 11357  2c2 11413  0cn0 11625  cz 11711  cuz 11975  cexp 13161  cdvds 15364  cprime 15764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-sup 8623  df-inf 8624  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-n0 11626  df-z 11712  df-uz 11976  df-q 12079  df-rp 12120  df-fz 12627  df-fl 12895  df-mod 12971  df-seq 13103  df-exp 13162  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-dvds 15365  df-gcd 15597  df-prm 15765  df-pc 15920
This theorem is referenced by:  lighneallem2  42367
  Copyright terms: Public domain W3C validator