MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1mul3 Structured version   Visualization version   GIF version

Theorem coe1mul3 24700
Description: The coefficient vector of multiplication in the univariate polynomial ring, at indices high enough that at most one component can be active in the sum. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
coe1mul3.s 𝑌 = (Poly1𝑅)
coe1mul3.t = (.r𝑌)
coe1mul3.u · = (.r𝑅)
coe1mul3.b 𝐵 = (Base‘𝑌)
coe1mul3.d 𝐷 = ( deg1𝑅)
coe1mul3.r (𝜑𝑅 ∈ Ring)
coe1mul3.f1 (𝜑𝐹𝐵)
coe1mul3.f2 (𝜑𝐼 ∈ ℕ0)
coe1mul3.f3 (𝜑 → (𝐷𝐹) ≤ 𝐼)
coe1mul3.g1 (𝜑𝐺𝐵)
coe1mul3.g2 (𝜑𝐽 ∈ ℕ0)
coe1mul3.g3 (𝜑 → (𝐷𝐺) ≤ 𝐽)
Assertion
Ref Expression
coe1mul3 (𝜑 → ((coe1‘(𝐹 𝐺))‘(𝐼 + 𝐽)) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘𝐽)))

Proof of Theorem coe1mul3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coe1mul3.r . . . 4 (𝜑𝑅 ∈ Ring)
2 coe1mul3.f1 . . . 4 (𝜑𝐹𝐵)
3 coe1mul3.g1 . . . 4 (𝜑𝐺𝐵)
4 coe1mul3.s . . . . 5 𝑌 = (Poly1𝑅)
5 coe1mul3.t . . . . 5 = (.r𝑌)
6 coe1mul3.u . . . . 5 · = (.r𝑅)
7 coe1mul3.b . . . . 5 𝐵 = (Base‘𝑌)
84, 5, 6, 7coe1mul 20899 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦)))))))
91, 2, 3, 8syl3anc 1368 . . 3 (𝜑 → (coe1‘(𝐹 𝐺)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦)))))))
109fveq1d 6647 . 2 (𝜑 → ((coe1‘(𝐹 𝐺))‘(𝐼 + 𝐽)) = ((𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))))))‘(𝐼 + 𝐽)))
11 coe1mul3.f2 . . . 4 (𝜑𝐼 ∈ ℕ0)
12 coe1mul3.g2 . . . 4 (𝜑𝐽 ∈ ℕ0)
1311, 12nn0addcld 11947 . . 3 (𝜑 → (𝐼 + 𝐽) ∈ ℕ0)
14 oveq2 7143 . . . . . 6 (𝑥 = (𝐼 + 𝐽) → (0...𝑥) = (0...(𝐼 + 𝐽)))
15 fvoveq1 7158 . . . . . . 7 (𝑥 = (𝐼 + 𝐽) → ((coe1𝐺)‘(𝑥𝑦)) = ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)))
1615oveq2d 7151 . . . . . 6 (𝑥 = (𝐼 + 𝐽) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))) = (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))
1714, 16mpteq12dv 5115 . . . . 5 (𝑥 = (𝐼 + 𝐽) → (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦)))) = (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)))))
1817oveq2d 7151 . . . 4 (𝑥 = (𝐼 + 𝐽) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))))) = (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))))
19 eqid 2798 . . . 4 (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦)))))) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))))))
20 ovex 7168 . . . 4 (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))) ∈ V
2118, 19, 20fvmpt 6745 . . 3 ((𝐼 + 𝐽) ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))))))‘(𝐼 + 𝐽)) = (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))))
2213, 21syl 17 . 2 (𝜑 → ((𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))))))‘(𝐼 + 𝐽)) = (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))))
23 eqid 2798 . . . 4 (Base‘𝑅) = (Base‘𝑅)
24 eqid 2798 . . . 4 (0g𝑅) = (0g𝑅)
25 ringmnd 19300 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
261, 25syl 17 . . . 4 (𝜑𝑅 ∈ Mnd)
27 ovexd 7170 . . . 4 (𝜑 → (0...(𝐼 + 𝐽)) ∈ V)
2811nn0red 11944 . . . . . 6 (𝜑𝐼 ∈ ℝ)
29 nn0addge1 11931 . . . . . 6 ((𝐼 ∈ ℝ ∧ 𝐽 ∈ ℕ0) → 𝐼 ≤ (𝐼 + 𝐽))
3028, 12, 29syl2anc 587 . . . . 5 (𝜑𝐼 ≤ (𝐼 + 𝐽))
31 fznn0 12994 . . . . . 6 ((𝐼 + 𝐽) ∈ ℕ0 → (𝐼 ∈ (0...(𝐼 + 𝐽)) ↔ (𝐼 ∈ ℕ0𝐼 ≤ (𝐼 + 𝐽))))
3213, 31syl 17 . . . . 5 (𝜑 → (𝐼 ∈ (0...(𝐼 + 𝐽)) ↔ (𝐼 ∈ ℕ0𝐼 ≤ (𝐼 + 𝐽))))
3311, 30, 32mpbir2and 712 . . . 4 (𝜑𝐼 ∈ (0...(𝐼 + 𝐽)))
341adantr 484 . . . . . 6 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑅 ∈ Ring)
35 eqid 2798 . . . . . . . . 9 (coe1𝐹) = (coe1𝐹)
3635, 7, 4, 23coe1f 20840 . . . . . . . 8 (𝐹𝐵 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
372, 36syl 17 . . . . . . 7 (𝜑 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
38 elfznn0 12995 . . . . . . 7 (𝑦 ∈ (0...(𝐼 + 𝐽)) → 𝑦 ∈ ℕ0)
39 ffvelrn 6826 . . . . . . 7 (((coe1𝐹):ℕ0⟶(Base‘𝑅) ∧ 𝑦 ∈ ℕ0) → ((coe1𝐹)‘𝑦) ∈ (Base‘𝑅))
4037, 38, 39syl2an 598 . . . . . 6 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((coe1𝐹)‘𝑦) ∈ (Base‘𝑅))
41 eqid 2798 . . . . . . . . 9 (coe1𝐺) = (coe1𝐺)
4241, 7, 4, 23coe1f 20840 . . . . . . . 8 (𝐺𝐵 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
433, 42syl 17 . . . . . . 7 (𝜑 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
44 fznn0sub 12934 . . . . . . 7 (𝑦 ∈ (0...(𝐼 + 𝐽)) → ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0)
45 ffvelrn 6826 . . . . . . 7 (((coe1𝐺):ℕ0⟶(Base‘𝑅) ∧ ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0) → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅))
4643, 44, 45syl2an 598 . . . . . 6 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅))
4723, 6ringcl 19307 . . . . . 6 ((𝑅 ∈ Ring ∧ ((coe1𝐹)‘𝑦) ∈ (Base‘𝑅) ∧ ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅)) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) ∈ (Base‘𝑅))
4834, 40, 46, 47syl3anc 1368 . . . . 5 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) ∈ (Base‘𝑅))
4948fmpttd 6856 . . . 4 (𝜑 → (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)))):(0...(𝐼 + 𝐽))⟶(Base‘𝑅))
50 eldifsn 4680 . . . . . 6 (𝑦 ∈ ((0...(𝐼 + 𝐽)) ∖ {𝐼}) ↔ (𝑦 ∈ (0...(𝐼 + 𝐽)) ∧ 𝑦𝐼))
5138adantl 485 . . . . . . . . . 10 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑦 ∈ ℕ0)
5251nn0red 11944 . . . . . . . . 9 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑦 ∈ ℝ)
5328adantr 484 . . . . . . . . 9 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝐼 ∈ ℝ)
5452, 53lttri2d 10768 . . . . . . . 8 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦𝐼 ↔ (𝑦 < 𝐼𝐼 < 𝑦)))
553ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → 𝐺𝐵)
5644adantl 485 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0)
5756adantr 484 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0)
58 coe1mul3.d . . . . . . . . . . . . . . . . 17 𝐷 = ( deg1𝑅)
5958, 4, 7deg1xrcl 24683 . . . . . . . . . . . . . . . 16 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
603, 59syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝐺) ∈ ℝ*)
6160ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (𝐷𝐺) ∈ ℝ*)
6212nn0red 11944 . . . . . . . . . . . . . . . 16 (𝜑𝐽 ∈ ℝ)
6362rexrd 10680 . . . . . . . . . . . . . . 15 (𝜑𝐽 ∈ ℝ*)
6463ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → 𝐽 ∈ ℝ*)
6513nn0red 11944 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐼 + 𝐽) ∈ ℝ)
6665adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝐼 + 𝐽) ∈ ℝ)
6766, 52resubcld 11057 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝐼 + 𝐽) − 𝑦) ∈ ℝ)
6867rexrd 10680 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝐼 + 𝐽) − 𝑦) ∈ ℝ*)
6968adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → ((𝐼 + 𝐽) − 𝑦) ∈ ℝ*)
70 coe1mul3.g3 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝐺) ≤ 𝐽)
7170ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (𝐷𝐺) ≤ 𝐽)
7262adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝐽 ∈ ℝ)
7352, 53, 72ltadd1d 11222 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦 < 𝐼 ↔ (𝑦 + 𝐽) < (𝐼 + 𝐽)))
7452, 72, 66ltaddsub2d 11230 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝑦 + 𝐽) < (𝐼 + 𝐽) ↔ 𝐽 < ((𝐼 + 𝐽) − 𝑦)))
7573, 74bitrd 282 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦 < 𝐼𝐽 < ((𝐼 + 𝐽) − 𝑦)))
7675biimpa 480 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → 𝐽 < ((𝐼 + 𝐽) − 𝑦))
7761, 64, 69, 71, 76xrlelttrd 12541 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (𝐷𝐺) < ((𝐼 + 𝐽) − 𝑦))
7858, 4, 7, 24, 41deg1lt 24698 . . . . . . . . . . . . 13 ((𝐺𝐵 ∧ ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0 ∧ (𝐷𝐺) < ((𝐼 + 𝐽) − 𝑦)) → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) = (0g𝑅))
7955, 57, 77, 78syl3anc 1368 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) = (0g𝑅))
8079oveq2d 7151 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (((coe1𝐹)‘𝑦) · (0g𝑅)))
8123, 6, 24ringrz 19334 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ ((coe1𝐹)‘𝑦) ∈ (Base‘𝑅)) → (((coe1𝐹)‘𝑦) · (0g𝑅)) = (0g𝑅))
8234, 40, 81syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (((coe1𝐹)‘𝑦) · (0g𝑅)) = (0g𝑅))
8382adantr 484 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (((coe1𝐹)‘𝑦) · (0g𝑅)) = (0g𝑅))
8480, 83eqtrd 2833 . . . . . . . . . 10 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
852ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝐹𝐵)
8651adantr 484 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝑦 ∈ ℕ0)
8758, 4, 7deg1xrcl 24683 . . . . . . . . . . . . . . . 16 (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
882, 87syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝐹) ∈ ℝ*)
8988ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (𝐷𝐹) ∈ ℝ*)
9028rexrd 10680 . . . . . . . . . . . . . . 15 (𝜑𝐼 ∈ ℝ*)
9190ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝐼 ∈ ℝ*)
9252rexrd 10680 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑦 ∈ ℝ*)
9392adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝑦 ∈ ℝ*)
94 coe1mul3.f3 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝐹) ≤ 𝐼)
9594ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (𝐷𝐹) ≤ 𝐼)
96 simpr 488 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝐼 < 𝑦)
9789, 91, 93, 95, 96xrlelttrd 12541 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (𝐷𝐹) < 𝑦)
9858, 4, 7, 24, 35deg1lt 24698 . . . . . . . . . . . . 13 ((𝐹𝐵𝑦 ∈ ℕ0 ∧ (𝐷𝐹) < 𝑦) → ((coe1𝐹)‘𝑦) = (0g𝑅))
9985, 86, 97, 98syl3anc 1368 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → ((coe1𝐹)‘𝑦) = (0g𝑅))
10099oveq1d 7150 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = ((0g𝑅) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))
10123, 6, 24ringlz 19333 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅)) → ((0g𝑅) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
10234, 46, 101syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((0g𝑅) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
103102adantr 484 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → ((0g𝑅) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
104100, 103eqtrd 2833 . . . . . . . . . 10 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
10584, 104jaodan 955 . . . . . . . . 9 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ (𝑦 < 𝐼𝐼 < 𝑦)) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
106105ex 416 . . . . . . . 8 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝑦 < 𝐼𝐼 < 𝑦) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅)))
10754, 106sylbid 243 . . . . . . 7 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦𝐼 → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅)))
108107impr 458 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (0...(𝐼 + 𝐽)) ∧ 𝑦𝐼)) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
10950, 108sylan2b 596 . . . . 5 ((𝜑𝑦 ∈ ((0...(𝐼 + 𝐽)) ∖ {𝐼})) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
110109, 27suppss2 7847 . . . 4 (𝜑 → ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)))) supp (0g𝑅)) ⊆ {𝐼})
11123, 24, 26, 27, 33, 49, 110gsumpt 19075 . . 3 (𝜑 → (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))) = ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))‘𝐼))
112 fveq2 6645 . . . . . 6 (𝑦 = 𝐼 → ((coe1𝐹)‘𝑦) = ((coe1𝐹)‘𝐼))
113 oveq2 7143 . . . . . . 7 (𝑦 = 𝐼 → ((𝐼 + 𝐽) − 𝑦) = ((𝐼 + 𝐽) − 𝐼))
114113fveq2d 6649 . . . . . 6 (𝑦 = 𝐼 → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) = ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼)))
115112, 114oveq12d 7153 . . . . 5 (𝑦 = 𝐼 → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼))))
116 eqid 2798 . . . . 5 (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)))) = (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))
117 ovex 7168 . . . . 5 (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼))) ∈ V
118115, 116, 117fvmpt 6745 . . . 4 (𝐼 ∈ (0...(𝐼 + 𝐽)) → ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))‘𝐼) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼))))
11933, 118syl 17 . . 3 (𝜑 → ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))‘𝐼) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼))))
12011nn0cnd 11945 . . . . . 6 (𝜑𝐼 ∈ ℂ)
12112nn0cnd 11945 . . . . . 6 (𝜑𝐽 ∈ ℂ)
122120, 121pncan2d 10988 . . . . 5 (𝜑 → ((𝐼 + 𝐽) − 𝐼) = 𝐽)
123122fveq2d 6649 . . . 4 (𝜑 → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼)) = ((coe1𝐺)‘𝐽))
124123oveq2d 7151 . . 3 (𝜑 → (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼))) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘𝐽)))
125111, 119, 1243eqtrd 2837 . 2 (𝜑 → (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘𝐽)))
12610, 22, 1253eqtrd 2837 1 (𝜑 → ((coe1‘(𝐹 𝐺))‘(𝐼 + 𝐽)) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  cdif 3878  {csn 4525   class class class wbr 5030  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526   + caddc 10529  *cxr 10663   < clt 10664  cle 10665  cmin 10859  0cn0 11885  ...cfz 12885  Basecbs 16475  .rcmulr 16558  0gc0g 16705   Σg cgsu 16706  Mndcmnd 17903  Ringcrg 19290  Poly1cpl1 20806  coe1cco1 20807   deg1 cdg1 24655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-mulg 18217  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-cnfld 20092  df-psr 20594  df-mpl 20596  df-opsr 20598  df-psr1 20809  df-ply1 20811  df-coe1 20812  df-mdeg 24656  df-deg1 24657
This theorem is referenced by:  coe1mul4  24701
  Copyright terms: Public domain W3C validator