| Step | Hyp | Ref
| Expression |
| 1 | | coe1mul3.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 2 | | coe1mul3.f1 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| 3 | | coe1mul3.g1 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| 4 | | coe1mul3.s |
. . . . 5
⊢ 𝑌 = (Poly1‘𝑅) |
| 5 | | coe1mul3.t |
. . . . 5
⊢ ∙ =
(.r‘𝑌) |
| 6 | | coe1mul3.u |
. . . . 5
⊢ · =
(.r‘𝑅) |
| 7 | | coe1mul3.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑌) |
| 8 | 4, 5, 6, 7 | coe1mul 22273 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ∙ 𝐺)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg
(𝑦 ∈ (0...𝑥) ↦
(((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦))))))) |
| 9 | 1, 2, 3, 8 | syl3anc 1373 |
. . 3
⊢ (𝜑 →
(coe1‘(𝐹
∙
𝐺)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg
(𝑦 ∈ (0...𝑥) ↦
(((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦))))))) |
| 10 | 9 | fveq1d 6908 |
. 2
⊢ (𝜑 →
((coe1‘(𝐹
∙
𝐺))‘(𝐼 + 𝐽)) = ((𝑥 ∈ ℕ0 ↦ (𝑅 Σg
(𝑦 ∈ (0...𝑥) ↦
(((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦))))))‘(𝐼 + 𝐽))) |
| 11 | | coe1mul3.f2 |
. . . 4
⊢ (𝜑 → 𝐼 ∈
ℕ0) |
| 12 | | coe1mul3.g2 |
. . . 4
⊢ (𝜑 → 𝐽 ∈
ℕ0) |
| 13 | 11, 12 | nn0addcld 12591 |
. . 3
⊢ (𝜑 → (𝐼 + 𝐽) ∈
ℕ0) |
| 14 | | oveq2 7439 |
. . . . . 6
⊢ (𝑥 = (𝐼 + 𝐽) → (0...𝑥) = (0...(𝐼 + 𝐽))) |
| 15 | | fvoveq1 7454 |
. . . . . . 7
⊢ (𝑥 = (𝐼 + 𝐽) → ((coe1‘𝐺)‘(𝑥 − 𝑦)) = ((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) |
| 16 | 15 | oveq2d 7447 |
. . . . . 6
⊢ (𝑥 = (𝐼 + 𝐽) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦))) = (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))) |
| 17 | 14, 16 | mpteq12dv 5233 |
. . . . 5
⊢ (𝑥 = (𝐼 + 𝐽) → (𝑦 ∈ (0...𝑥) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦)))) = (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))))) |
| 18 | 17 | oveq2d 7447 |
. . . 4
⊢ (𝑥 = (𝐼 + 𝐽) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦))))) = (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))))) |
| 19 | | eqid 2737 |
. . . 4
⊢ (𝑥 ∈ ℕ0
↦ (𝑅
Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦)))))) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg
(𝑦 ∈ (0...𝑥) ↦
(((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦)))))) |
| 20 | | ovex 7464 |
. . . 4
⊢ (𝑅 Σg
(𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))))) ∈ V |
| 21 | 18, 19, 20 | fvmpt 7016 |
. . 3
⊢ ((𝐼 + 𝐽) ∈ ℕ0 → ((𝑥 ∈ ℕ0
↦ (𝑅
Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦))))))‘(𝐼 + 𝐽)) = (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))))) |
| 22 | 13, 21 | syl 17 |
. 2
⊢ (𝜑 → ((𝑥 ∈ ℕ0 ↦ (𝑅 Σg
(𝑦 ∈ (0...𝑥) ↦
(((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦))))))‘(𝐼 + 𝐽)) = (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))))) |
| 23 | | eqid 2737 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 24 | | eqid 2737 |
. . . 4
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 25 | | ringmnd 20240 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 26 | 1, 25 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 27 | | ovexd 7466 |
. . . 4
⊢ (𝜑 → (0...(𝐼 + 𝐽)) ∈ V) |
| 28 | 11 | nn0red 12588 |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ ℝ) |
| 29 | | nn0addge1 12572 |
. . . . . 6
⊢ ((𝐼 ∈ ℝ ∧ 𝐽 ∈ ℕ0)
→ 𝐼 ≤ (𝐼 + 𝐽)) |
| 30 | 28, 12, 29 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → 𝐼 ≤ (𝐼 + 𝐽)) |
| 31 | | fznn0 13659 |
. . . . . 6
⊢ ((𝐼 + 𝐽) ∈ ℕ0 → (𝐼 ∈ (0...(𝐼 + 𝐽)) ↔ (𝐼 ∈ ℕ0 ∧ 𝐼 ≤ (𝐼 + 𝐽)))) |
| 32 | 13, 31 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐼 ∈ (0...(𝐼 + 𝐽)) ↔ (𝐼 ∈ ℕ0 ∧ 𝐼 ≤ (𝐼 + 𝐽)))) |
| 33 | 11, 30, 32 | mpbir2and 713 |
. . . 4
⊢ (𝜑 → 𝐼 ∈ (0...(𝐼 + 𝐽))) |
| 34 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑅 ∈ Ring) |
| 35 | | eqid 2737 |
. . . . . . . . 9
⊢
(coe1‘𝐹) = (coe1‘𝐹) |
| 36 | 35, 7, 4, 23 | coe1f 22213 |
. . . . . . . 8
⊢ (𝐹 ∈ 𝐵 → (coe1‘𝐹):ℕ0⟶(Base‘𝑅)) |
| 37 | 2, 36 | syl 17 |
. . . . . . 7
⊢ (𝜑 →
(coe1‘𝐹):ℕ0⟶(Base‘𝑅)) |
| 38 | | elfznn0 13660 |
. . . . . . 7
⊢ (𝑦 ∈ (0...(𝐼 + 𝐽)) → 𝑦 ∈ ℕ0) |
| 39 | | ffvelcdm 7101 |
. . . . . . 7
⊢
(((coe1‘𝐹):ℕ0⟶(Base‘𝑅) ∧ 𝑦 ∈ ℕ0) →
((coe1‘𝐹)‘𝑦) ∈ (Base‘𝑅)) |
| 40 | 37, 38, 39 | syl2an 596 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → ((coe1‘𝐹)‘𝑦) ∈ (Base‘𝑅)) |
| 41 | | eqid 2737 |
. . . . . . . . 9
⊢
(coe1‘𝐺) = (coe1‘𝐺) |
| 42 | 41, 7, 4, 23 | coe1f 22213 |
. . . . . . . 8
⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
| 43 | 3, 42 | syl 17 |
. . . . . . 7
⊢ (𝜑 →
(coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
| 44 | | fznn0sub 13596 |
. . . . . . 7
⊢ (𝑦 ∈ (0...(𝐼 + 𝐽)) → ((𝐼 + 𝐽) − 𝑦) ∈
ℕ0) |
| 45 | | ffvelcdm 7101 |
. . . . . . 7
⊢
(((coe1‘𝐺):ℕ0⟶(Base‘𝑅) ∧ ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0) →
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅)) |
| 46 | 43, 44, 45 | syl2an 596 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → ((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅)) |
| 47 | 23, 6 | ringcl 20247 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝐹)‘𝑦) ∈ (Base‘𝑅) ∧ ((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅)) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) ∈ (Base‘𝑅)) |
| 48 | 34, 40, 46, 47 | syl3anc 1373 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) ∈ (Base‘𝑅)) |
| 49 | 48 | fmpttd 7135 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))):(0...(𝐼 + 𝐽))⟶(Base‘𝑅)) |
| 50 | | eldifsn 4786 |
. . . . . 6
⊢ (𝑦 ∈ ((0...(𝐼 + 𝐽)) ∖ {𝐼}) ↔ (𝑦 ∈ (0...(𝐼 + 𝐽)) ∧ 𝑦 ≠ 𝐼)) |
| 51 | 38 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑦 ∈ ℕ0) |
| 52 | 51 | nn0red 12588 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑦 ∈ ℝ) |
| 53 | 28 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝐼 ∈ ℝ) |
| 54 | 52, 53 | lttri2d 11400 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦 ≠ 𝐼 ↔ (𝑦 < 𝐼 ∨ 𝐼 < 𝑦))) |
| 55 | 3 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → 𝐺 ∈ 𝐵) |
| 56 | 44 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝐼 + 𝐽) − 𝑦) ∈
ℕ0) |
| 57 | 56 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → ((𝐼 + 𝐽) − 𝑦) ∈
ℕ0) |
| 58 | | coe1mul3.d |
. . . . . . . . . . . . . . . . 17
⊢ 𝐷 = (deg1‘𝑅) |
| 59 | 58, 4, 7 | deg1xrcl 26121 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 ∈ 𝐵 → (𝐷‘𝐺) ∈
ℝ*) |
| 60 | 3, 59 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐷‘𝐺) ∈
ℝ*) |
| 61 | 60 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (𝐷‘𝐺) ∈
ℝ*) |
| 62 | 12 | nn0red 12588 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐽 ∈ ℝ) |
| 63 | 62 | rexrd 11311 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐽 ∈
ℝ*) |
| 64 | 63 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → 𝐽 ∈
ℝ*) |
| 65 | 13 | nn0red 12588 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐼 + 𝐽) ∈ ℝ) |
| 66 | 65 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝐼 + 𝐽) ∈ ℝ) |
| 67 | 66, 52 | resubcld 11691 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝐼 + 𝐽) − 𝑦) ∈ ℝ) |
| 68 | 67 | rexrd 11311 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝐼 + 𝐽) − 𝑦) ∈
ℝ*) |
| 69 | 68 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → ((𝐼 + 𝐽) − 𝑦) ∈
ℝ*) |
| 70 | | coe1mul3.g3 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐽) |
| 71 | 70 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (𝐷‘𝐺) ≤ 𝐽) |
| 72 | 62 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝐽 ∈ ℝ) |
| 73 | 52, 53, 72 | ltadd1d 11856 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦 < 𝐼 ↔ (𝑦 + 𝐽) < (𝐼 + 𝐽))) |
| 74 | 52, 72, 66 | ltaddsub2d 11864 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝑦 + 𝐽) < (𝐼 + 𝐽) ↔ 𝐽 < ((𝐼 + 𝐽) − 𝑦))) |
| 75 | 73, 74 | bitrd 279 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦 < 𝐼 ↔ 𝐽 < ((𝐼 + 𝐽) − 𝑦))) |
| 76 | 75 | biimpa 476 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → 𝐽 < ((𝐼 + 𝐽) − 𝑦)) |
| 77 | 61, 64, 69, 71, 76 | xrlelttrd 13202 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (𝐷‘𝐺) < ((𝐼 + 𝐽) − 𝑦)) |
| 78 | 58, 4, 7, 24, 41 | deg1lt 26136 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ 𝐵 ∧ ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0 ∧ (𝐷‘𝐺) < ((𝐼 + 𝐽) − 𝑦)) → ((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)) = (0g‘𝑅)) |
| 79 | 55, 57, 77, 78 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → ((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)) = (0g‘𝑅)) |
| 80 | 79 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (((coe1‘𝐹)‘𝑦) ·
(0g‘𝑅))) |
| 81 | 23, 6, 24 | ringrz 20291 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝐹)‘𝑦) ∈ (Base‘𝑅)) → (((coe1‘𝐹)‘𝑦) ·
(0g‘𝑅)) =
(0g‘𝑅)) |
| 82 | 34, 40, 81 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → (((coe1‘𝐹)‘𝑦) ·
(0g‘𝑅)) =
(0g‘𝑅)) |
| 83 | 82 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (((coe1‘𝐹)‘𝑦) ·
(0g‘𝑅)) =
(0g‘𝑅)) |
| 84 | 80, 83 | eqtrd 2777 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅)) |
| 85 | 2 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝐹 ∈ 𝐵) |
| 86 | 51 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝑦 ∈ ℕ0) |
| 87 | 58, 4, 7 | deg1xrcl 26121 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈
ℝ*) |
| 88 | 2, 87 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐷‘𝐹) ∈
ℝ*) |
| 89 | 88 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (𝐷‘𝐹) ∈
ℝ*) |
| 90 | 28 | rexrd 11311 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐼 ∈
ℝ*) |
| 91 | 90 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝐼 ∈
ℝ*) |
| 92 | 52 | rexrd 11311 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑦 ∈ ℝ*) |
| 93 | 92 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝑦 ∈ ℝ*) |
| 94 | | coe1mul3.f3 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐼) |
| 95 | 94 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (𝐷‘𝐹) ≤ 𝐼) |
| 96 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝐼 < 𝑦) |
| 97 | 89, 91, 93, 95, 96 | xrlelttrd 13202 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (𝐷‘𝐹) < 𝑦) |
| 98 | 58, 4, 7, 24, 35 | deg1lt 26136 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ∧ (𝐷‘𝐹) < 𝑦) → ((coe1‘𝐹)‘𝑦) = (0g‘𝑅)) |
| 99 | 85, 86, 97, 98 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → ((coe1‘𝐹)‘𝑦) = (0g‘𝑅)) |
| 100 | 99 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = ((0g‘𝑅) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))) |
| 101 | 23, 6, 24 | ringlz 20290 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅)) → ((0g‘𝑅) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅)) |
| 102 | 34, 46, 101 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → ((0g‘𝑅) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅)) |
| 103 | 102 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → ((0g‘𝑅) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅)) |
| 104 | 100, 103 | eqtrd 2777 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅)) |
| 105 | 84, 104 | jaodan 960 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ (𝑦 < 𝐼 ∨ 𝐼 < 𝑦)) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅)) |
| 106 | 105 | ex 412 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝑦 < 𝐼 ∨ 𝐼 < 𝑦) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅))) |
| 107 | 54, 106 | sylbid 240 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦 ≠ 𝐼 → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅))) |
| 108 | 107 | impr 454 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (0...(𝐼 + 𝐽)) ∧ 𝑦 ≠ 𝐼)) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅)) |
| 109 | 50, 108 | sylan2b 594 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ((0...(𝐼 + 𝐽)) ∖ {𝐼})) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅)) |
| 110 | 109, 27 | suppss2 8225 |
. . . 4
⊢ (𝜑 → ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))) supp (0g‘𝑅)) ⊆ {𝐼}) |
| 111 | 23, 24, 26, 27, 33, 49, 110 | gsumpt 19980 |
. . 3
⊢ (𝜑 → (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))))) = ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))))‘𝐼)) |
| 112 | | fveq2 6906 |
. . . . . 6
⊢ (𝑦 = 𝐼 → ((coe1‘𝐹)‘𝑦) = ((coe1‘𝐹)‘𝐼)) |
| 113 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑦 = 𝐼 → ((𝐼 + 𝐽) − 𝑦) = ((𝐼 + 𝐽) − 𝐼)) |
| 114 | 113 | fveq2d 6910 |
. . . . . 6
⊢ (𝑦 = 𝐼 → ((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)) = ((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝐼))) |
| 115 | 112, 114 | oveq12d 7449 |
. . . . 5
⊢ (𝑦 = 𝐼 → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (((coe1‘𝐹)‘𝐼) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝐼)))) |
| 116 | | eqid 2737 |
. . . . 5
⊢ (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))) = (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))) |
| 117 | | ovex 7464 |
. . . . 5
⊢
(((coe1‘𝐹)‘𝐼) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝐼))) ∈ V |
| 118 | 115, 116,
117 | fvmpt 7016 |
. . . 4
⊢ (𝐼 ∈ (0...(𝐼 + 𝐽)) → ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))))‘𝐼) = (((coe1‘𝐹)‘𝐼) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝐼)))) |
| 119 | 33, 118 | syl 17 |
. . 3
⊢ (𝜑 → ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))))‘𝐼) = (((coe1‘𝐹)‘𝐼) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝐼)))) |
| 120 | 11 | nn0cnd 12589 |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ ℂ) |
| 121 | 12 | nn0cnd 12589 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ ℂ) |
| 122 | 120, 121 | pncan2d 11622 |
. . . . 5
⊢ (𝜑 → ((𝐼 + 𝐽) − 𝐼) = 𝐽) |
| 123 | 122 | fveq2d 6910 |
. . . 4
⊢ (𝜑 →
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝐼)) = ((coe1‘𝐺)‘𝐽)) |
| 124 | 123 | oveq2d 7447 |
. . 3
⊢ (𝜑 →
(((coe1‘𝐹)‘𝐼) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝐼))) = (((coe1‘𝐹)‘𝐼) ·
((coe1‘𝐺)‘𝐽))) |
| 125 | 111, 119,
124 | 3eqtrd 2781 |
. 2
⊢ (𝜑 → (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))))) = (((coe1‘𝐹)‘𝐼) ·
((coe1‘𝐺)‘𝐽))) |
| 126 | 10, 22, 125 | 3eqtrd 2781 |
1
⊢ (𝜑 →
((coe1‘(𝐹
∙
𝐺))‘(𝐼 + 𝐽)) = (((coe1‘𝐹)‘𝐼) ·
((coe1‘𝐺)‘𝐽))) |