MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1mul3 Structured version   Visualization version   GIF version

Theorem coe1mul3 25169
Description: The coefficient vector of multiplication in the univariate polynomial ring, at indices high enough that at most one component can be active in the sum. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
coe1mul3.s 𝑌 = (Poly1𝑅)
coe1mul3.t = (.r𝑌)
coe1mul3.u · = (.r𝑅)
coe1mul3.b 𝐵 = (Base‘𝑌)
coe1mul3.d 𝐷 = ( deg1𝑅)
coe1mul3.r (𝜑𝑅 ∈ Ring)
coe1mul3.f1 (𝜑𝐹𝐵)
coe1mul3.f2 (𝜑𝐼 ∈ ℕ0)
coe1mul3.f3 (𝜑 → (𝐷𝐹) ≤ 𝐼)
coe1mul3.g1 (𝜑𝐺𝐵)
coe1mul3.g2 (𝜑𝐽 ∈ ℕ0)
coe1mul3.g3 (𝜑 → (𝐷𝐺) ≤ 𝐽)
Assertion
Ref Expression
coe1mul3 (𝜑 → ((coe1‘(𝐹 𝐺))‘(𝐼 + 𝐽)) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘𝐽)))

Proof of Theorem coe1mul3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coe1mul3.r . . . 4 (𝜑𝑅 ∈ Ring)
2 coe1mul3.f1 . . . 4 (𝜑𝐹𝐵)
3 coe1mul3.g1 . . . 4 (𝜑𝐺𝐵)
4 coe1mul3.s . . . . 5 𝑌 = (Poly1𝑅)
5 coe1mul3.t . . . . 5 = (.r𝑌)
6 coe1mul3.u . . . . 5 · = (.r𝑅)
7 coe1mul3.b . . . . 5 𝐵 = (Base‘𝑌)
84, 5, 6, 7coe1mul 21351 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦)))))))
91, 2, 3, 8syl3anc 1369 . . 3 (𝜑 → (coe1‘(𝐹 𝐺)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦)))))))
109fveq1d 6758 . 2 (𝜑 → ((coe1‘(𝐹 𝐺))‘(𝐼 + 𝐽)) = ((𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))))))‘(𝐼 + 𝐽)))
11 coe1mul3.f2 . . . 4 (𝜑𝐼 ∈ ℕ0)
12 coe1mul3.g2 . . . 4 (𝜑𝐽 ∈ ℕ0)
1311, 12nn0addcld 12227 . . 3 (𝜑 → (𝐼 + 𝐽) ∈ ℕ0)
14 oveq2 7263 . . . . . 6 (𝑥 = (𝐼 + 𝐽) → (0...𝑥) = (0...(𝐼 + 𝐽)))
15 fvoveq1 7278 . . . . . . 7 (𝑥 = (𝐼 + 𝐽) → ((coe1𝐺)‘(𝑥𝑦)) = ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)))
1615oveq2d 7271 . . . . . 6 (𝑥 = (𝐼 + 𝐽) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))) = (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))
1714, 16mpteq12dv 5161 . . . . 5 (𝑥 = (𝐼 + 𝐽) → (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦)))) = (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)))))
1817oveq2d 7271 . . . 4 (𝑥 = (𝐼 + 𝐽) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))))) = (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))))
19 eqid 2738 . . . 4 (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦)))))) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))))))
20 ovex 7288 . . . 4 (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))) ∈ V
2118, 19, 20fvmpt 6857 . . 3 ((𝐼 + 𝐽) ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))))))‘(𝐼 + 𝐽)) = (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))))
2213, 21syl 17 . 2 (𝜑 → ((𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))))))‘(𝐼 + 𝐽)) = (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))))
23 eqid 2738 . . . 4 (Base‘𝑅) = (Base‘𝑅)
24 eqid 2738 . . . 4 (0g𝑅) = (0g𝑅)
25 ringmnd 19708 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
261, 25syl 17 . . . 4 (𝜑𝑅 ∈ Mnd)
27 ovexd 7290 . . . 4 (𝜑 → (0...(𝐼 + 𝐽)) ∈ V)
2811nn0red 12224 . . . . . 6 (𝜑𝐼 ∈ ℝ)
29 nn0addge1 12209 . . . . . 6 ((𝐼 ∈ ℝ ∧ 𝐽 ∈ ℕ0) → 𝐼 ≤ (𝐼 + 𝐽))
3028, 12, 29syl2anc 583 . . . . 5 (𝜑𝐼 ≤ (𝐼 + 𝐽))
31 fznn0 13277 . . . . . 6 ((𝐼 + 𝐽) ∈ ℕ0 → (𝐼 ∈ (0...(𝐼 + 𝐽)) ↔ (𝐼 ∈ ℕ0𝐼 ≤ (𝐼 + 𝐽))))
3213, 31syl 17 . . . . 5 (𝜑 → (𝐼 ∈ (0...(𝐼 + 𝐽)) ↔ (𝐼 ∈ ℕ0𝐼 ≤ (𝐼 + 𝐽))))
3311, 30, 32mpbir2and 709 . . . 4 (𝜑𝐼 ∈ (0...(𝐼 + 𝐽)))
341adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑅 ∈ Ring)
35 eqid 2738 . . . . . . . . 9 (coe1𝐹) = (coe1𝐹)
3635, 7, 4, 23coe1f 21292 . . . . . . . 8 (𝐹𝐵 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
372, 36syl 17 . . . . . . 7 (𝜑 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
38 elfznn0 13278 . . . . . . 7 (𝑦 ∈ (0...(𝐼 + 𝐽)) → 𝑦 ∈ ℕ0)
39 ffvelrn 6941 . . . . . . 7 (((coe1𝐹):ℕ0⟶(Base‘𝑅) ∧ 𝑦 ∈ ℕ0) → ((coe1𝐹)‘𝑦) ∈ (Base‘𝑅))
4037, 38, 39syl2an 595 . . . . . 6 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((coe1𝐹)‘𝑦) ∈ (Base‘𝑅))
41 eqid 2738 . . . . . . . . 9 (coe1𝐺) = (coe1𝐺)
4241, 7, 4, 23coe1f 21292 . . . . . . . 8 (𝐺𝐵 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
433, 42syl 17 . . . . . . 7 (𝜑 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
44 fznn0sub 13217 . . . . . . 7 (𝑦 ∈ (0...(𝐼 + 𝐽)) → ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0)
45 ffvelrn 6941 . . . . . . 7 (((coe1𝐺):ℕ0⟶(Base‘𝑅) ∧ ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0) → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅))
4643, 44, 45syl2an 595 . . . . . 6 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅))
4723, 6ringcl 19715 . . . . . 6 ((𝑅 ∈ Ring ∧ ((coe1𝐹)‘𝑦) ∈ (Base‘𝑅) ∧ ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅)) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) ∈ (Base‘𝑅))
4834, 40, 46, 47syl3anc 1369 . . . . 5 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) ∈ (Base‘𝑅))
4948fmpttd 6971 . . . 4 (𝜑 → (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)))):(0...(𝐼 + 𝐽))⟶(Base‘𝑅))
50 eldifsn 4717 . . . . . 6 (𝑦 ∈ ((0...(𝐼 + 𝐽)) ∖ {𝐼}) ↔ (𝑦 ∈ (0...(𝐼 + 𝐽)) ∧ 𝑦𝐼))
5138adantl 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑦 ∈ ℕ0)
5251nn0red 12224 . . . . . . . . 9 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑦 ∈ ℝ)
5328adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝐼 ∈ ℝ)
5452, 53lttri2d 11044 . . . . . . . 8 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦𝐼 ↔ (𝑦 < 𝐼𝐼 < 𝑦)))
553ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → 𝐺𝐵)
5644adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0)
5756adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0)
58 coe1mul3.d . . . . . . . . . . . . . . . . 17 𝐷 = ( deg1𝑅)
5958, 4, 7deg1xrcl 25152 . . . . . . . . . . . . . . . 16 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
603, 59syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝐺) ∈ ℝ*)
6160ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (𝐷𝐺) ∈ ℝ*)
6212nn0red 12224 . . . . . . . . . . . . . . . 16 (𝜑𝐽 ∈ ℝ)
6362rexrd 10956 . . . . . . . . . . . . . . 15 (𝜑𝐽 ∈ ℝ*)
6463ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → 𝐽 ∈ ℝ*)
6513nn0red 12224 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐼 + 𝐽) ∈ ℝ)
6665adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝐼 + 𝐽) ∈ ℝ)
6766, 52resubcld 11333 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝐼 + 𝐽) − 𝑦) ∈ ℝ)
6867rexrd 10956 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝐼 + 𝐽) − 𝑦) ∈ ℝ*)
6968adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → ((𝐼 + 𝐽) − 𝑦) ∈ ℝ*)
70 coe1mul3.g3 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝐺) ≤ 𝐽)
7170ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (𝐷𝐺) ≤ 𝐽)
7262adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝐽 ∈ ℝ)
7352, 53, 72ltadd1d 11498 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦 < 𝐼 ↔ (𝑦 + 𝐽) < (𝐼 + 𝐽)))
7452, 72, 66ltaddsub2d 11506 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝑦 + 𝐽) < (𝐼 + 𝐽) ↔ 𝐽 < ((𝐼 + 𝐽) − 𝑦)))
7573, 74bitrd 278 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦 < 𝐼𝐽 < ((𝐼 + 𝐽) − 𝑦)))
7675biimpa 476 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → 𝐽 < ((𝐼 + 𝐽) − 𝑦))
7761, 64, 69, 71, 76xrlelttrd 12823 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (𝐷𝐺) < ((𝐼 + 𝐽) − 𝑦))
7858, 4, 7, 24, 41deg1lt 25167 . . . . . . . . . . . . 13 ((𝐺𝐵 ∧ ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0 ∧ (𝐷𝐺) < ((𝐼 + 𝐽) − 𝑦)) → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) = (0g𝑅))
7955, 57, 77, 78syl3anc 1369 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) = (0g𝑅))
8079oveq2d 7271 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (((coe1𝐹)‘𝑦) · (0g𝑅)))
8123, 6, 24ringrz 19742 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ ((coe1𝐹)‘𝑦) ∈ (Base‘𝑅)) → (((coe1𝐹)‘𝑦) · (0g𝑅)) = (0g𝑅))
8234, 40, 81syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (((coe1𝐹)‘𝑦) · (0g𝑅)) = (0g𝑅))
8382adantr 480 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (((coe1𝐹)‘𝑦) · (0g𝑅)) = (0g𝑅))
8480, 83eqtrd 2778 . . . . . . . . . 10 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
852ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝐹𝐵)
8651adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝑦 ∈ ℕ0)
8758, 4, 7deg1xrcl 25152 . . . . . . . . . . . . . . . 16 (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
882, 87syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝐹) ∈ ℝ*)
8988ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (𝐷𝐹) ∈ ℝ*)
9028rexrd 10956 . . . . . . . . . . . . . . 15 (𝜑𝐼 ∈ ℝ*)
9190ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝐼 ∈ ℝ*)
9252rexrd 10956 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑦 ∈ ℝ*)
9392adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝑦 ∈ ℝ*)
94 coe1mul3.f3 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝐹) ≤ 𝐼)
9594ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (𝐷𝐹) ≤ 𝐼)
96 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝐼 < 𝑦)
9789, 91, 93, 95, 96xrlelttrd 12823 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (𝐷𝐹) < 𝑦)
9858, 4, 7, 24, 35deg1lt 25167 . . . . . . . . . . . . 13 ((𝐹𝐵𝑦 ∈ ℕ0 ∧ (𝐷𝐹) < 𝑦) → ((coe1𝐹)‘𝑦) = (0g𝑅))
9985, 86, 97, 98syl3anc 1369 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → ((coe1𝐹)‘𝑦) = (0g𝑅))
10099oveq1d 7270 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = ((0g𝑅) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))
10123, 6, 24ringlz 19741 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅)) → ((0g𝑅) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
10234, 46, 101syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((0g𝑅) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
103102adantr 480 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → ((0g𝑅) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
104100, 103eqtrd 2778 . . . . . . . . . 10 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
10584, 104jaodan 954 . . . . . . . . 9 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ (𝑦 < 𝐼𝐼 < 𝑦)) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
106105ex 412 . . . . . . . 8 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝑦 < 𝐼𝐼 < 𝑦) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅)))
10754, 106sylbid 239 . . . . . . 7 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦𝐼 → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅)))
108107impr 454 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (0...(𝐼 + 𝐽)) ∧ 𝑦𝐼)) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
10950, 108sylan2b 593 . . . . 5 ((𝜑𝑦 ∈ ((0...(𝐼 + 𝐽)) ∖ {𝐼})) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
110109, 27suppss2 7987 . . . 4 (𝜑 → ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)))) supp (0g𝑅)) ⊆ {𝐼})
11123, 24, 26, 27, 33, 49, 110gsumpt 19478 . . 3 (𝜑 → (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))) = ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))‘𝐼))
112 fveq2 6756 . . . . . 6 (𝑦 = 𝐼 → ((coe1𝐹)‘𝑦) = ((coe1𝐹)‘𝐼))
113 oveq2 7263 . . . . . . 7 (𝑦 = 𝐼 → ((𝐼 + 𝐽) − 𝑦) = ((𝐼 + 𝐽) − 𝐼))
114113fveq2d 6760 . . . . . 6 (𝑦 = 𝐼 → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) = ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼)))
115112, 114oveq12d 7273 . . . . 5 (𝑦 = 𝐼 → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼))))
116 eqid 2738 . . . . 5 (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)))) = (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))
117 ovex 7288 . . . . 5 (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼))) ∈ V
118115, 116, 117fvmpt 6857 . . . 4 (𝐼 ∈ (0...(𝐼 + 𝐽)) → ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))‘𝐼) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼))))
11933, 118syl 17 . . 3 (𝜑 → ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))‘𝐼) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼))))
12011nn0cnd 12225 . . . . . 6 (𝜑𝐼 ∈ ℂ)
12112nn0cnd 12225 . . . . . 6 (𝜑𝐽 ∈ ℂ)
122120, 121pncan2d 11264 . . . . 5 (𝜑 → ((𝐼 + 𝐽) − 𝐼) = 𝐽)
123122fveq2d 6760 . . . 4 (𝜑 → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼)) = ((coe1𝐺)‘𝐽))
124123oveq2d 7271 . . 3 (𝜑 → (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼))) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘𝐽)))
125111, 119, 1243eqtrd 2782 . 2 (𝜑 → (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘𝐽)))
12610, 22, 1253eqtrd 2782 1 (𝜑 → ((coe1‘(𝐹 𝐺))‘(𝐼 + 𝐽)) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  cdif 3880  {csn 4558   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802   + caddc 10805  *cxr 10939   < clt 10940  cle 10941  cmin 11135  0cn0 12163  ...cfz 13168  Basecbs 16840  .rcmulr 16889  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300  Ringcrg 19698  Poly1cpl1 21258  coe1cco1 21259   deg1 cdg1 25121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-mulg 18616  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-cnfld 20511  df-psr 21022  df-mpl 21024  df-opsr 21026  df-psr1 21261  df-ply1 21263  df-coe1 21264  df-mdeg 25122  df-deg1 25123
This theorem is referenced by:  coe1mul4  25170
  Copyright terms: Public domain W3C validator