MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmul2dd Structured version   Visualization version   GIF version

Theorem ltmul2dd 13155
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
ltmul1d.1 (𝜑𝐴 ∈ ℝ)
ltmul1d.2 (𝜑𝐵 ∈ ℝ)
ltmul1d.3 (𝜑𝐶 ∈ ℝ+)
ltdiv1dd.4 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
ltmul2dd (𝜑 → (𝐶 · 𝐴) < (𝐶 · 𝐵))

Proof of Theorem ltmul2dd
StepHypRef Expression
1 ltdiv1dd.4 . 2 (𝜑𝐴 < 𝐵)
2 ltmul1d.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ltmul1d.2 . . 3 (𝜑𝐵 ∈ ℝ)
4 ltmul1d.3 . . 3 (𝜑𝐶 ∈ ℝ+)
52, 3, 4ltmul2d 13141 . 2 (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 · 𝐴) < (𝐶 · 𝐵)))
61, 5mpbid 232 1 (𝜑 → (𝐶 · 𝐴) < (𝐶 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5166  (class class class)co 7448  cr 11183   · cmul 11189   < clt 11324  +crp 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-sub 11522  df-neg 11523  df-rp 13058
This theorem is referenced by:  mul2lt0bi  13163  reccn2  15643  mertenslem1  15932  nrginvrcnlem  24733  nmoleub2lem3  25167  bclbnd  27342  pntlemb  27659  hgt750lemd  34625  knoppndvlem12  36489  itg2addnclem2  37632  cntotbnd  37756  aks4d1p8d2  42042  2ap1caineq  42102  fltnltalem  42617  fltnlta  42618  sqrlearg  45471  0ellimcdiv  45570  stirlinglem5  45999  2itscp  48515
  Copyright terms: Public domain W3C validator