MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmul2dd Structured version   Visualization version   GIF version

Theorem ltmul2dd 12996
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
ltmul1d.1 (𝜑𝐴 ∈ ℝ)
ltmul1d.2 (𝜑𝐵 ∈ ℝ)
ltmul1d.3 (𝜑𝐶 ∈ ℝ+)
ltdiv1dd.4 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
ltmul2dd (𝜑 → (𝐶 · 𝐴) < (𝐶 · 𝐵))

Proof of Theorem ltmul2dd
StepHypRef Expression
1 ltdiv1dd.4 . 2 (𝜑𝐴 < 𝐵)
2 ltmul1d.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ltmul1d.2 . . 3 (𝜑𝐵 ∈ ℝ)
4 ltmul1d.3 . . 3 (𝜑𝐶 ∈ ℝ+)
52, 3, 4ltmul2d 12982 . 2 (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 · 𝐴) < (𝐶 · 𝐵)))
61, 5mpbid 232 1 (𝜑 → (𝐶 · 𝐴) < (𝐶 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113   class class class wbr 5095  (class class class)co 7355  cr 11016   · cmul 11022   < clt 11157  +crp 12896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-ltxr 11162  df-sub 11357  df-neg 11358  df-rp 12897
This theorem is referenced by:  mul2lt0bi  13004  reccn2  15511  mertenslem1  15798  nrginvrcnlem  24626  nmoleub2lem3  25062  bclbnd  27238  pntlemb  27555  hgt750lemd  34733  knoppndvlem12  36639  itg2addnclem2  37785  cntotbnd  37909  aks4d1p8d2  42251  2ap1caineq  42311  fltnltalem  42820  fltnlta  42821  sqrlearg  45715  0ellimcdiv  45809  stirlinglem5  46238  2itscp  48943
  Copyright terms: Public domain W3C validator