MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmul1dd Structured version   Visualization version   GIF version

Theorem ltmul1dd 12340
Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
ltmul1d.1 (𝜑𝐴 ∈ ℝ)
ltmul1d.2 (𝜑𝐵 ∈ ℝ)
ltmul1d.3 (𝜑𝐶 ∈ ℝ+)
ltdiv1dd.4 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
ltmul1dd (𝜑 → (𝐴 · 𝐶) < (𝐵 · 𝐶))

Proof of Theorem ltmul1dd
StepHypRef Expression
1 ltdiv1dd.4 . 2 (𝜑𝐴 < 𝐵)
2 ltmul1d.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ltmul1d.2 . . 3 (𝜑𝐵 ∈ ℝ)
4 ltmul1d.3 . . 3 (𝜑𝐶 ∈ ℝ+)
52, 3, 4ltmul1d 12326 . 2 (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)))
61, 5mpbid 233 1 (𝜑 → (𝐴 · 𝐶) < (𝐵 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2083   class class class wbr 4968  (class class class)co 7023  cr 10389   · cmul 10395   < clt 10528  +crp 12243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-po 5369  df-so 5370  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-pnf 10530  df-mnf 10531  df-ltxr 10533  df-sub 10725  df-neg 10726  df-rp 12244
This theorem is referenced by:  mul2lt0bi  12349  o1rlimmul  14813  2expltfac  16259  lhop1lem  24297  ftalem5  25340  chtppilimlem1  25735  pntibndlem2  25853  pntlemb  25859  pntlemr  25864  ostth2lem1  25880  ostth2lem3  25897  tgoldbachgtde  31544  fltnltalem  38792  ioodvbdlimc1lem1  41779  stoweidlem11  41860  stoweidlem13  41862  stoweidlem26  41875  wallispi  41919  stirlinglem1  41923  dirkercncflem4  41955  fourierdlem4  41960
  Copyright terms: Public domain W3C validator