Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltdiv1dd | Structured version Visualization version GIF version |
Description: Division of both sides of 'less than' by a positive number. (Contributed by Mario Carneiro, 30-May-2016.) |
Ref | Expression |
---|---|
ltmul1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltmul1d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltmul1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
ltdiv1dd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
ltdiv1dd | ⊢ (𝜑 → (𝐴 / 𝐶) < (𝐵 / 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltdiv1dd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | ltmul1d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltmul1d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | ltmul1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
5 | 2, 3, 4 | ltdiv1d 12814 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶))) |
6 | 1, 5 | mpbid 231 | 1 ⊢ (𝜑 → (𝐴 / 𝐶) < (𝐵 / 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 class class class wbr 5079 (class class class)co 7269 ℝcr 10869 < clt 11008 / cdiv 11630 ℝ+crp 12727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-resscn 10927 ax-1cn 10928 ax-icn 10929 ax-addcl 10930 ax-addrcl 10931 ax-mulcl 10932 ax-mulrcl 10933 ax-mulcom 10934 ax-addass 10935 ax-mulass 10936 ax-distr 10937 ax-i2m1 10938 ax-1ne0 10939 ax-1rid 10940 ax-rnegex 10941 ax-rrecex 10942 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 ax-pre-ltadd 10946 ax-pre-mulgt0 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-er 8479 df-en 8715 df-dom 8716 df-sdom 8717 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 df-sub 11205 df-neg 11206 df-div 11631 df-rp 12728 |
This theorem is referenced by: mul2lt0rlt0 12829 aaliou 25494 cos02pilt1 25678 chebbnd1lem2 26614 pntlemb 26741 dya2icoseg 32238 3lexlogpow2ineq2 40062 fltnlta 40495 hashnzfzclim 41908 0ellimcdiv 43159 dirkercncflem1 43613 dirkercncflem4 43616 fourierdlem10 43627 fourierdlem19 43636 fourierdlem24 43641 fourierdlem42 43659 fourierdlem62 43678 fourierdlem65 43681 fourierdlem79 43695 dignn0flhalflem1 45928 |
Copyright terms: Public domain | W3C validator |