Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulge0d | Structured version Visualization version GIF version |
Description: The product of two nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
addge0d.3 | ⊢ (𝜑 → 0 ≤ 𝐴) |
addge0d.4 | ⊢ (𝜑 → 0 ≤ 𝐵) |
Ref | Expression |
---|---|
mulge0d | ⊢ (𝜑 → 0 ≤ (𝐴 · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | addge0d.3 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) | |
3 | ltnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | addge0d.4 | . 2 ⊢ (𝜑 → 0 ≤ 𝐵) | |
5 | mulge0 11423 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵)) | |
6 | 1, 2, 3, 4, 5 | syl22anc 835 | 1 ⊢ (𝜑 → 0 ≤ (𝐴 · 𝐵)) |
Copyright terms: Public domain | W3C validator |