MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsge1 Structured version   Visualization version   GIF version

Theorem nnsge1 28242
Description: A positive surreal integer is greater than or equal to one. (Contributed by Scott Fenton, 26-Jul-2025.)
Assertion
Ref Expression
nnsge1 (𝑁 ∈ ℕs → 1s ≤s 𝑁)

Proof of Theorem nnsge1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elnns 28239 . 2 (𝑁 ∈ ℕs ↔ (𝑁 ∈ ℕ0s𝑁 ≠ 0s ))
2 n0s0suc 28241 . . 3 (𝑁 ∈ ℕ0s → (𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )))
3 neneq 2932 . . 3 (𝑁 ≠ 0s → ¬ 𝑁 = 0s )
4 pm2.53 851 . . . . 5 ((𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) → (¬ 𝑁 = 0s → ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )))
54imp 406 . . . 4 (((𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) ∧ ¬ 𝑁 = 0s ) → ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s ))
6 1sno 27746 . . . . . . . 8 1s No
7 addslid 27882 . . . . . . . 8 ( 1s No → ( 0s +s 1s ) = 1s )
86, 7ax-mp 5 . . . . . . 7 ( 0s +s 1s ) = 1s
9 n0sge0 28237 . . . . . . . 8 (𝑥 ∈ ℕ0s → 0s ≤s 𝑥)
10 n0sno 28223 . . . . . . . . 9 (𝑥 ∈ ℕ0s𝑥 No )
11 0sno 27745 . . . . . . . . . 10 0s No
12 sleadd1 27903 . . . . . . . . . 10 (( 0s No 𝑥 No ∧ 1s No ) → ( 0s ≤s 𝑥 ↔ ( 0s +s 1s ) ≤s (𝑥 +s 1s )))
1311, 6, 12mp3an13 1454 . . . . . . . . 9 (𝑥 No → ( 0s ≤s 𝑥 ↔ ( 0s +s 1s ) ≤s (𝑥 +s 1s )))
1410, 13syl 17 . . . . . . . 8 (𝑥 ∈ ℕ0s → ( 0s ≤s 𝑥 ↔ ( 0s +s 1s ) ≤s (𝑥 +s 1s )))
159, 14mpbid 232 . . . . . . 7 (𝑥 ∈ ℕ0s → ( 0s +s 1s ) ≤s (𝑥 +s 1s ))
168, 15eqbrtrrid 5146 . . . . . 6 (𝑥 ∈ ℕ0s → 1s ≤s (𝑥 +s 1s ))
17 breq2 5114 . . . . . 6 (𝑁 = (𝑥 +s 1s ) → ( 1s ≤s 𝑁 ↔ 1s ≤s (𝑥 +s 1s )))
1816, 17syl5ibrcom 247 . . . . 5 (𝑥 ∈ ℕ0s → (𝑁 = (𝑥 +s 1s ) → 1s ≤s 𝑁))
1918rexlimiv 3128 . . . 4 (∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s ) → 1s ≤s 𝑁)
205, 19syl 17 . . 3 (((𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) ∧ ¬ 𝑁 = 0s ) → 1s ≤s 𝑁)
212, 3, 20syl2an 596 . 2 ((𝑁 ∈ ℕ0s𝑁 ≠ 0s ) → 1s ≤s 𝑁)
221, 21sylbi 217 1 (𝑁 ∈ ℕs → 1s ≤s 𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wrex 3054   class class class wbr 5110  (class class class)co 7390   No csur 27558   ≤s csle 27663   0s c0s 27741   1s c1s 27742   +s cadds 27873  0scnn0s 28213  scnns 28214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-1s 27744  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec2 27863  df-adds 27874  df-n0s 28215  df-nns 28216
This theorem is referenced by:  n0sltp1le  28262
  Copyright terms: Public domain W3C validator