| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnsge1 | Structured version Visualization version GIF version | ||
| Description: A positive surreal integer is greater than or equal to one. (Contributed by Scott Fenton, 26-Jul-2025.) |
| Ref | Expression |
|---|---|
| nnsge1 | ⊢ (𝑁 ∈ ℕs → 1s ≤s 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnns 28269 | . 2 ⊢ (𝑁 ∈ ℕs ↔ (𝑁 ∈ ℕ0s ∧ 𝑁 ≠ 0s )) | |
| 2 | n0s0suc 28271 | . . 3 ⊢ (𝑁 ∈ ℕ0s → (𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s ))) | |
| 3 | neneq 2935 | . . 3 ⊢ (𝑁 ≠ 0s → ¬ 𝑁 = 0s ) | |
| 4 | pm2.53 851 | . . . . 5 ⊢ ((𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) → (¬ 𝑁 = 0s → ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s ))) | |
| 5 | 4 | imp 406 | . . . 4 ⊢ (((𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) ∧ ¬ 𝑁 = 0s ) → ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) |
| 6 | 1sno 27772 | . . . . . . . 8 ⊢ 1s ∈ No | |
| 7 | addslid 27912 | . . . . . . . 8 ⊢ ( 1s ∈ No → ( 0s +s 1s ) = 1s ) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . . 7 ⊢ ( 0s +s 1s ) = 1s |
| 9 | n0sge0 28267 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0s → 0s ≤s 𝑥) | |
| 10 | n0sno 28253 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ0s → 𝑥 ∈ No ) | |
| 11 | 0sno 27771 | . . . . . . . . . 10 ⊢ 0s ∈ No | |
| 12 | sleadd1 27933 | . . . . . . . . . 10 ⊢ (( 0s ∈ No ∧ 𝑥 ∈ No ∧ 1s ∈ No ) → ( 0s ≤s 𝑥 ↔ ( 0s +s 1s ) ≤s (𝑥 +s 1s ))) | |
| 13 | 11, 6, 12 | mp3an13 1454 | . . . . . . . . 9 ⊢ (𝑥 ∈ No → ( 0s ≤s 𝑥 ↔ ( 0s +s 1s ) ≤s (𝑥 +s 1s ))) |
| 14 | 10, 13 | syl 17 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0s → ( 0s ≤s 𝑥 ↔ ( 0s +s 1s ) ≤s (𝑥 +s 1s ))) |
| 15 | 9, 14 | mpbid 232 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ0s → ( 0s +s 1s ) ≤s (𝑥 +s 1s )) |
| 16 | 8, 15 | eqbrtrrid 5129 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0s → 1s ≤s (𝑥 +s 1s )) |
| 17 | breq2 5097 | . . . . . 6 ⊢ (𝑁 = (𝑥 +s 1s ) → ( 1s ≤s 𝑁 ↔ 1s ≤s (𝑥 +s 1s ))) | |
| 18 | 16, 17 | syl5ibrcom 247 | . . . . 5 ⊢ (𝑥 ∈ ℕ0s → (𝑁 = (𝑥 +s 1s ) → 1s ≤s 𝑁)) |
| 19 | 18 | rexlimiv 3127 | . . . 4 ⊢ (∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s ) → 1s ≤s 𝑁) |
| 20 | 5, 19 | syl 17 | . . 3 ⊢ (((𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) ∧ ¬ 𝑁 = 0s ) → 1s ≤s 𝑁) |
| 21 | 2, 3, 20 | syl2an 596 | . 2 ⊢ ((𝑁 ∈ ℕ0s ∧ 𝑁 ≠ 0s ) → 1s ≤s 𝑁) |
| 22 | 1, 21 | sylbi 217 | 1 ⊢ (𝑁 ∈ ℕs → 1s ≤s 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∃wrex 3057 class class class wbr 5093 (class class class)co 7352 No csur 27579 ≤s csle 27684 0s c0s 27767 1s c1s 27768 +s cadds 27903 ℕ0scnn0s 28243 ℕscnns 28244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-ot 4584 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-nadd 8587 df-no 27582 df-slt 27583 df-bday 27584 df-sle 27685 df-sslt 27722 df-scut 27724 df-0s 27769 df-1s 27770 df-made 27789 df-old 27790 df-left 27792 df-right 27793 df-norec2 27893 df-adds 27904 df-n0s 28245 df-nns 28246 |
| This theorem is referenced by: n0sltp1le 28292 |
| Copyright terms: Public domain | W3C validator |