| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnsge1 | Structured version Visualization version GIF version | ||
| Description: A positive surreal integer is greater than or equal to one. (Contributed by Scott Fenton, 26-Jul-2025.) |
| Ref | Expression |
|---|---|
| nnsge1 | ⊢ (𝑁 ∈ ℕs → 1s ≤s 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnns 28255 | . 2 ⊢ (𝑁 ∈ ℕs ↔ (𝑁 ∈ ℕ0s ∧ 𝑁 ≠ 0s )) | |
| 2 | n0s0suc 28257 | . . 3 ⊢ (𝑁 ∈ ℕ0s → (𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s ))) | |
| 3 | neneq 2931 | . . 3 ⊢ (𝑁 ≠ 0s → ¬ 𝑁 = 0s ) | |
| 4 | pm2.53 851 | . . . . 5 ⊢ ((𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) → (¬ 𝑁 = 0s → ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s ))) | |
| 5 | 4 | imp 406 | . . . 4 ⊢ (((𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) ∧ ¬ 𝑁 = 0s ) → ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) |
| 6 | 1sno 27759 | . . . . . . . 8 ⊢ 1s ∈ No | |
| 7 | addslid 27898 | . . . . . . . 8 ⊢ ( 1s ∈ No → ( 0s +s 1s ) = 1s ) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . . 7 ⊢ ( 0s +s 1s ) = 1s |
| 9 | n0sge0 28253 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0s → 0s ≤s 𝑥) | |
| 10 | n0sno 28239 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ0s → 𝑥 ∈ No ) | |
| 11 | 0sno 27758 | . . . . . . . . . 10 ⊢ 0s ∈ No | |
| 12 | sleadd1 27919 | . . . . . . . . . 10 ⊢ (( 0s ∈ No ∧ 𝑥 ∈ No ∧ 1s ∈ No ) → ( 0s ≤s 𝑥 ↔ ( 0s +s 1s ) ≤s (𝑥 +s 1s ))) | |
| 13 | 11, 6, 12 | mp3an13 1454 | . . . . . . . . 9 ⊢ (𝑥 ∈ No → ( 0s ≤s 𝑥 ↔ ( 0s +s 1s ) ≤s (𝑥 +s 1s ))) |
| 14 | 10, 13 | syl 17 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0s → ( 0s ≤s 𝑥 ↔ ( 0s +s 1s ) ≤s (𝑥 +s 1s ))) |
| 15 | 9, 14 | mpbid 232 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ0s → ( 0s +s 1s ) ≤s (𝑥 +s 1s )) |
| 16 | 8, 15 | eqbrtrrid 5131 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0s → 1s ≤s (𝑥 +s 1s )) |
| 17 | breq2 5099 | . . . . . 6 ⊢ (𝑁 = (𝑥 +s 1s ) → ( 1s ≤s 𝑁 ↔ 1s ≤s (𝑥 +s 1s ))) | |
| 18 | 16, 17 | syl5ibrcom 247 | . . . . 5 ⊢ (𝑥 ∈ ℕ0s → (𝑁 = (𝑥 +s 1s ) → 1s ≤s 𝑁)) |
| 19 | 18 | rexlimiv 3123 | . . . 4 ⊢ (∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s ) → 1s ≤s 𝑁) |
| 20 | 5, 19 | syl 17 | . . 3 ⊢ (((𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) ∧ ¬ 𝑁 = 0s ) → 1s ≤s 𝑁) |
| 21 | 2, 3, 20 | syl2an 596 | . 2 ⊢ ((𝑁 ∈ ℕ0s ∧ 𝑁 ≠ 0s ) → 1s ≤s 𝑁) |
| 22 | 1, 21 | sylbi 217 | 1 ⊢ (𝑁 ∈ ℕs → 1s ≤s 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 class class class wbr 5095 (class class class)co 7353 No csur 27567 ≤s csle 27672 0s c0s 27754 1s c1s 27755 +s cadds 27889 ℕ0scnn0s 28229 ℕscnns 28230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-nadd 8591 df-no 27570 df-slt 27571 df-bday 27572 df-sle 27673 df-sslt 27710 df-scut 27712 df-0s 27756 df-1s 27757 df-made 27775 df-old 27776 df-left 27778 df-right 27779 df-norec2 27879 df-adds 27890 df-n0s 28231 df-nns 28232 |
| This theorem is referenced by: n0sltp1le 28278 |
| Copyright terms: Public domain | W3C validator |