MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsge1 Structured version   Visualization version   GIF version

Theorem nnsge1 28364
Description: A positive surreal integer is greater than or equal to one. (Contributed by Scott Fenton, 26-Jul-2025.)
Assertion
Ref Expression
nnsge1 (𝑁 ∈ ℕs → 1s ≤s 𝑁)

Proof of Theorem nnsge1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elnns 28361 . 2 (𝑁 ∈ ℕs ↔ (𝑁 ∈ ℕ0s𝑁 ≠ 0s ))
2 n0s0suc 28363 . . 3 (𝑁 ∈ ℕ0s → (𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )))
3 neneq 2952 . . 3 (𝑁 ≠ 0s → ¬ 𝑁 = 0s )
4 pm2.53 850 . . . . 5 ((𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) → (¬ 𝑁 = 0s → ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )))
54imp 406 . . . 4 (((𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) ∧ ¬ 𝑁 = 0s ) → ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s ))
6 1sno 27890 . . . . . . . 8 1s No
7 addslid 28019 . . . . . . . 8 ( 1s No → ( 0s +s 1s ) = 1s )
86, 7ax-mp 5 . . . . . . 7 ( 0s +s 1s ) = 1s
9 n0sge0 28359 . . . . . . . 8 (𝑥 ∈ ℕ0s → 0s ≤s 𝑥)
10 n0sno 28346 . . . . . . . . 9 (𝑥 ∈ ℕ0s𝑥 No )
11 0sno 27889 . . . . . . . . . 10 0s No
12 sleadd1 28040 . . . . . . . . . 10 (( 0s No 𝑥 No ∧ 1s No ) → ( 0s ≤s 𝑥 ↔ ( 0s +s 1s ) ≤s (𝑥 +s 1s )))
1311, 6, 12mp3an13 1452 . . . . . . . . 9 (𝑥 No → ( 0s ≤s 𝑥 ↔ ( 0s +s 1s ) ≤s (𝑥 +s 1s )))
1410, 13syl 17 . . . . . . . 8 (𝑥 ∈ ℕ0s → ( 0s ≤s 𝑥 ↔ ( 0s +s 1s ) ≤s (𝑥 +s 1s )))
159, 14mpbid 232 . . . . . . 7 (𝑥 ∈ ℕ0s → ( 0s +s 1s ) ≤s (𝑥 +s 1s ))
168, 15eqbrtrrid 5202 . . . . . 6 (𝑥 ∈ ℕ0s → 1s ≤s (𝑥 +s 1s ))
17 breq2 5170 . . . . . 6 (𝑁 = (𝑥 +s 1s ) → ( 1s ≤s 𝑁 ↔ 1s ≤s (𝑥 +s 1s )))
1816, 17syl5ibrcom 247 . . . . 5 (𝑥 ∈ ℕ0s → (𝑁 = (𝑥 +s 1s ) → 1s ≤s 𝑁))
1918rexlimiv 3154 . . . 4 (∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s ) → 1s ≤s 𝑁)
205, 19syl 17 . . 3 (((𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) ∧ ¬ 𝑁 = 0s ) → 1s ≤s 𝑁)
212, 3, 20syl2an 595 . 2 ((𝑁 ∈ ℕ0s𝑁 ≠ 0s ) → 1s ≤s 𝑁)
221, 21sylbi 217 1 (𝑁 ∈ ℕs → 1s ≤s 𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  (class class class)co 7448   No csur 27702   ≤s csle 27807   0s c0s 27885   1s c1s 27886   +s cadds 28010  0scnn0s 28336  scnns 28337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec2 28000  df-adds 28011  df-n0s 28338  df-nns 28339
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator