MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsge1 Structured version   Visualization version   GIF version

Theorem nnsge1 28258
Description: A positive surreal integer is greater than or equal to one. (Contributed by Scott Fenton, 26-Jul-2025.)
Assertion
Ref Expression
nnsge1 (𝑁 ∈ ℕs → 1s ≤s 𝑁)

Proof of Theorem nnsge1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elnns 28255 . 2 (𝑁 ∈ ℕs ↔ (𝑁 ∈ ℕ0s𝑁 ≠ 0s ))
2 n0s0suc 28257 . . 3 (𝑁 ∈ ℕ0s → (𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )))
3 neneq 2931 . . 3 (𝑁 ≠ 0s → ¬ 𝑁 = 0s )
4 pm2.53 851 . . . . 5 ((𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) → (¬ 𝑁 = 0s → ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )))
54imp 406 . . . 4 (((𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) ∧ ¬ 𝑁 = 0s ) → ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s ))
6 1sno 27759 . . . . . . . 8 1s No
7 addslid 27898 . . . . . . . 8 ( 1s No → ( 0s +s 1s ) = 1s )
86, 7ax-mp 5 . . . . . . 7 ( 0s +s 1s ) = 1s
9 n0sge0 28253 . . . . . . . 8 (𝑥 ∈ ℕ0s → 0s ≤s 𝑥)
10 n0sno 28239 . . . . . . . . 9 (𝑥 ∈ ℕ0s𝑥 No )
11 0sno 27758 . . . . . . . . . 10 0s No
12 sleadd1 27919 . . . . . . . . . 10 (( 0s No 𝑥 No ∧ 1s No ) → ( 0s ≤s 𝑥 ↔ ( 0s +s 1s ) ≤s (𝑥 +s 1s )))
1311, 6, 12mp3an13 1454 . . . . . . . . 9 (𝑥 No → ( 0s ≤s 𝑥 ↔ ( 0s +s 1s ) ≤s (𝑥 +s 1s )))
1410, 13syl 17 . . . . . . . 8 (𝑥 ∈ ℕ0s → ( 0s ≤s 𝑥 ↔ ( 0s +s 1s ) ≤s (𝑥 +s 1s )))
159, 14mpbid 232 . . . . . . 7 (𝑥 ∈ ℕ0s → ( 0s +s 1s ) ≤s (𝑥 +s 1s ))
168, 15eqbrtrrid 5131 . . . . . 6 (𝑥 ∈ ℕ0s → 1s ≤s (𝑥 +s 1s ))
17 breq2 5099 . . . . . 6 (𝑁 = (𝑥 +s 1s ) → ( 1s ≤s 𝑁 ↔ 1s ≤s (𝑥 +s 1s )))
1816, 17syl5ibrcom 247 . . . . 5 (𝑥 ∈ ℕ0s → (𝑁 = (𝑥 +s 1s ) → 1s ≤s 𝑁))
1918rexlimiv 3123 . . . 4 (∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s ) → 1s ≤s 𝑁)
205, 19syl 17 . . 3 (((𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) ∧ ¬ 𝑁 = 0s ) → 1s ≤s 𝑁)
212, 3, 20syl2an 596 . 2 ((𝑁 ∈ ℕ0s𝑁 ≠ 0s ) → 1s ≤s 𝑁)
221, 21sylbi 217 1 (𝑁 ∈ ℕs → 1s ≤s 𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5095  (class class class)co 7353   No csur 27567   ≤s csle 27672   0s c0s 27754   1s c1s 27755   +s cadds 27889  0scnn0s 28229  scnns 28230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-nadd 8591  df-no 27570  df-slt 27571  df-bday 27572  df-sle 27673  df-sslt 27710  df-scut 27712  df-0s 27756  df-1s 27757  df-made 27775  df-old 27776  df-left 27778  df-right 27779  df-norec2 27879  df-adds 27890  df-n0s 28231  df-nns 28232
This theorem is referenced by:  n0sltp1le  28278
  Copyright terms: Public domain W3C validator