| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnsge1 | Structured version Visualization version GIF version | ||
| Description: A positive surreal integer is greater than or equal to one. (Contributed by Scott Fenton, 26-Jul-2025.) |
| Ref | Expression |
|---|---|
| nnsge1 | ⊢ (𝑁 ∈ ℕs → 1s ≤s 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnns 28266 | . 2 ⊢ (𝑁 ∈ ℕs ↔ (𝑁 ∈ ℕ0s ∧ 𝑁 ≠ 0s )) | |
| 2 | n0s0suc 28268 | . . 3 ⊢ (𝑁 ∈ ℕ0s → (𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s ))) | |
| 3 | neneq 2934 | . . 3 ⊢ (𝑁 ≠ 0s → ¬ 𝑁 = 0s ) | |
| 4 | pm2.53 851 | . . . . 5 ⊢ ((𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) → (¬ 𝑁 = 0s → ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s ))) | |
| 5 | 4 | imp 406 | . . . 4 ⊢ (((𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) ∧ ¬ 𝑁 = 0s ) → ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) |
| 6 | 1sno 27769 | . . . . . . . 8 ⊢ 1s ∈ No | |
| 7 | addslid 27909 | . . . . . . . 8 ⊢ ( 1s ∈ No → ( 0s +s 1s ) = 1s ) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . . 7 ⊢ ( 0s +s 1s ) = 1s |
| 9 | n0sge0 28264 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0s → 0s ≤s 𝑥) | |
| 10 | n0sno 28250 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ0s → 𝑥 ∈ No ) | |
| 11 | 0sno 27768 | . . . . . . . . . 10 ⊢ 0s ∈ No | |
| 12 | sleadd1 27930 | . . . . . . . . . 10 ⊢ (( 0s ∈ No ∧ 𝑥 ∈ No ∧ 1s ∈ No ) → ( 0s ≤s 𝑥 ↔ ( 0s +s 1s ) ≤s (𝑥 +s 1s ))) | |
| 13 | 11, 6, 12 | mp3an13 1454 | . . . . . . . . 9 ⊢ (𝑥 ∈ No → ( 0s ≤s 𝑥 ↔ ( 0s +s 1s ) ≤s (𝑥 +s 1s ))) |
| 14 | 10, 13 | syl 17 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0s → ( 0s ≤s 𝑥 ↔ ( 0s +s 1s ) ≤s (𝑥 +s 1s ))) |
| 15 | 9, 14 | mpbid 232 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ0s → ( 0s +s 1s ) ≤s (𝑥 +s 1s )) |
| 16 | 8, 15 | eqbrtrrid 5127 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0s → 1s ≤s (𝑥 +s 1s )) |
| 17 | breq2 5095 | . . . . . 6 ⊢ (𝑁 = (𝑥 +s 1s ) → ( 1s ≤s 𝑁 ↔ 1s ≤s (𝑥 +s 1s ))) | |
| 18 | 16, 17 | syl5ibrcom 247 | . . . . 5 ⊢ (𝑥 ∈ ℕ0s → (𝑁 = (𝑥 +s 1s ) → 1s ≤s 𝑁)) |
| 19 | 18 | rexlimiv 3126 | . . . 4 ⊢ (∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s ) → 1s ≤s 𝑁) |
| 20 | 5, 19 | syl 17 | . . 3 ⊢ (((𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) ∧ ¬ 𝑁 = 0s ) → 1s ≤s 𝑁) |
| 21 | 2, 3, 20 | syl2an 596 | . 2 ⊢ ((𝑁 ∈ ℕ0s ∧ 𝑁 ≠ 0s ) → 1s ≤s 𝑁) |
| 22 | 1, 21 | sylbi 217 | 1 ⊢ (𝑁 ∈ ℕs → 1s ≤s 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 class class class wbr 5091 (class class class)co 7346 No csur 27576 ≤s csle 27681 0s c0s 27764 1s c1s 27765 +s cadds 27900 ℕ0scnn0s 28240 ℕscnns 28241 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-ot 4585 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-nadd 8581 df-no 27579 df-slt 27580 df-bday 27581 df-sle 27682 df-sslt 27719 df-scut 27721 df-0s 27766 df-1s 27767 df-made 27786 df-old 27787 df-left 27789 df-right 27790 df-norec2 27890 df-adds 27901 df-n0s 28242 df-nns 28243 |
| This theorem is referenced by: n0sltp1le 28289 |
| Copyright terms: Public domain | W3C validator |