MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsge1 Structured version   Visualization version   GIF version

Theorem nnsge1 28269
Description: A positive surreal integer is greater than or equal to one. (Contributed by Scott Fenton, 26-Jul-2025.)
Assertion
Ref Expression
nnsge1 (𝑁 ∈ ℕs → 1s ≤s 𝑁)

Proof of Theorem nnsge1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elnns 28266 . 2 (𝑁 ∈ ℕs ↔ (𝑁 ∈ ℕ0s𝑁 ≠ 0s ))
2 n0s0suc 28268 . . 3 (𝑁 ∈ ℕ0s → (𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )))
3 neneq 2934 . . 3 (𝑁 ≠ 0s → ¬ 𝑁 = 0s )
4 pm2.53 851 . . . . 5 ((𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) → (¬ 𝑁 = 0s → ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )))
54imp 406 . . . 4 (((𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) ∧ ¬ 𝑁 = 0s ) → ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s ))
6 1sno 27769 . . . . . . . 8 1s No
7 addslid 27909 . . . . . . . 8 ( 1s No → ( 0s +s 1s ) = 1s )
86, 7ax-mp 5 . . . . . . 7 ( 0s +s 1s ) = 1s
9 n0sge0 28264 . . . . . . . 8 (𝑥 ∈ ℕ0s → 0s ≤s 𝑥)
10 n0sno 28250 . . . . . . . . 9 (𝑥 ∈ ℕ0s𝑥 No )
11 0sno 27768 . . . . . . . . . 10 0s No
12 sleadd1 27930 . . . . . . . . . 10 (( 0s No 𝑥 No ∧ 1s No ) → ( 0s ≤s 𝑥 ↔ ( 0s +s 1s ) ≤s (𝑥 +s 1s )))
1311, 6, 12mp3an13 1454 . . . . . . . . 9 (𝑥 No → ( 0s ≤s 𝑥 ↔ ( 0s +s 1s ) ≤s (𝑥 +s 1s )))
1410, 13syl 17 . . . . . . . 8 (𝑥 ∈ ℕ0s → ( 0s ≤s 𝑥 ↔ ( 0s +s 1s ) ≤s (𝑥 +s 1s )))
159, 14mpbid 232 . . . . . . 7 (𝑥 ∈ ℕ0s → ( 0s +s 1s ) ≤s (𝑥 +s 1s ))
168, 15eqbrtrrid 5127 . . . . . 6 (𝑥 ∈ ℕ0s → 1s ≤s (𝑥 +s 1s ))
17 breq2 5095 . . . . . 6 (𝑁 = (𝑥 +s 1s ) → ( 1s ≤s 𝑁 ↔ 1s ≤s (𝑥 +s 1s )))
1816, 17syl5ibrcom 247 . . . . 5 (𝑥 ∈ ℕ0s → (𝑁 = (𝑥 +s 1s ) → 1s ≤s 𝑁))
1918rexlimiv 3126 . . . 4 (∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s ) → 1s ≤s 𝑁)
205, 19syl 17 . . 3 (((𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) ∧ ¬ 𝑁 = 0s ) → 1s ≤s 𝑁)
212, 3, 20syl2an 596 . 2 ((𝑁 ∈ ℕ0s𝑁 ≠ 0s ) → 1s ≤s 𝑁)
221, 21sylbi 217 1 (𝑁 ∈ ℕs → 1s ≤s 𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  wrex 3056   class class class wbr 5091  (class class class)co 7346   No csur 27576   ≤s csle 27681   0s c0s 27764   1s c1s 27765   +s cadds 27900  0scnn0s 28240  scnns 28241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27579  df-slt 27580  df-bday 27581  df-sle 27682  df-sslt 27719  df-scut 27721  df-0s 27766  df-1s 27767  df-made 27786  df-old 27787  df-left 27789  df-right 27790  df-norec2 27890  df-adds 27901  df-n0s 28242  df-nns 28243
This theorem is referenced by:  n0sltp1le  28289
  Copyright terms: Public domain W3C validator