![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnsge1 | Structured version Visualization version GIF version |
Description: A positive surreal integer is greater than or equal to one. (Contributed by Scott Fenton, 26-Jul-2025.) |
Ref | Expression |
---|---|
nnsge1 | ⊢ (𝑁 ∈ ℕs → 1s ≤s 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnns 28361 | . 2 ⊢ (𝑁 ∈ ℕs ↔ (𝑁 ∈ ℕ0s ∧ 𝑁 ≠ 0s )) | |
2 | n0s0suc 28363 | . . 3 ⊢ (𝑁 ∈ ℕ0s → (𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s ))) | |
3 | neneq 2952 | . . 3 ⊢ (𝑁 ≠ 0s → ¬ 𝑁 = 0s ) | |
4 | pm2.53 850 | . . . . 5 ⊢ ((𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) → (¬ 𝑁 = 0s → ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s ))) | |
5 | 4 | imp 406 | . . . 4 ⊢ (((𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) ∧ ¬ 𝑁 = 0s ) → ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) |
6 | 1sno 27890 | . . . . . . . 8 ⊢ 1s ∈ No | |
7 | addslid 28019 | . . . . . . . 8 ⊢ ( 1s ∈ No → ( 0s +s 1s ) = 1s ) | |
8 | 6, 7 | ax-mp 5 | . . . . . . 7 ⊢ ( 0s +s 1s ) = 1s |
9 | n0sge0 28359 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0s → 0s ≤s 𝑥) | |
10 | n0sno 28346 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ0s → 𝑥 ∈ No ) | |
11 | 0sno 27889 | . . . . . . . . . 10 ⊢ 0s ∈ No | |
12 | sleadd1 28040 | . . . . . . . . . 10 ⊢ (( 0s ∈ No ∧ 𝑥 ∈ No ∧ 1s ∈ No ) → ( 0s ≤s 𝑥 ↔ ( 0s +s 1s ) ≤s (𝑥 +s 1s ))) | |
13 | 11, 6, 12 | mp3an13 1452 | . . . . . . . . 9 ⊢ (𝑥 ∈ No → ( 0s ≤s 𝑥 ↔ ( 0s +s 1s ) ≤s (𝑥 +s 1s ))) |
14 | 10, 13 | syl 17 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0s → ( 0s ≤s 𝑥 ↔ ( 0s +s 1s ) ≤s (𝑥 +s 1s ))) |
15 | 9, 14 | mpbid 232 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ0s → ( 0s +s 1s ) ≤s (𝑥 +s 1s )) |
16 | 8, 15 | eqbrtrrid 5202 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0s → 1s ≤s (𝑥 +s 1s )) |
17 | breq2 5170 | . . . . . 6 ⊢ (𝑁 = (𝑥 +s 1s ) → ( 1s ≤s 𝑁 ↔ 1s ≤s (𝑥 +s 1s ))) | |
18 | 16, 17 | syl5ibrcom 247 | . . . . 5 ⊢ (𝑥 ∈ ℕ0s → (𝑁 = (𝑥 +s 1s ) → 1s ≤s 𝑁)) |
19 | 18 | rexlimiv 3154 | . . . 4 ⊢ (∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s ) → 1s ≤s 𝑁) |
20 | 5, 19 | syl 17 | . . 3 ⊢ (((𝑁 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑁 = (𝑥 +s 1s )) ∧ ¬ 𝑁 = 0s ) → 1s ≤s 𝑁) |
21 | 2, 3, 20 | syl2an 595 | . 2 ⊢ ((𝑁 ∈ ℕ0s ∧ 𝑁 ≠ 0s ) → 1s ≤s 𝑁) |
22 | 1, 21 | sylbi 217 | 1 ⊢ (𝑁 ∈ ℕs → 1s ≤s 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 class class class wbr 5166 (class class class)co 7448 No csur 27702 ≤s csle 27807 0s c0s 27885 1s c1s 27886 +s cadds 28010 ℕ0scnn0s 28336 ℕscnns 28337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-nadd 8722 df-no 27705 df-slt 27706 df-bday 27707 df-sle 27808 df-sslt 27844 df-scut 27846 df-0s 27887 df-1s 27888 df-made 27904 df-old 27905 df-left 27907 df-right 27908 df-norec2 28000 df-adds 28011 df-n0s 28338 df-nns 28339 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |