![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnexpcl | Structured version Visualization version GIF version |
Description: Closure of exponentiation of nonnegative integers. (Contributed by NM, 16-Dec-2005.) |
Ref | Expression |
---|---|
nnexpcl | ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnsscn 12268 | . 2 ⊢ ℕ ⊆ ℂ | |
2 | nnmulcl 12287 | . 2 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 · 𝑦) ∈ ℕ) | |
3 | 1nn 12274 | . 2 ⊢ 1 ∈ ℕ | |
4 | 1, 2, 3 | expcllem 14109 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 (class class class)co 7430 ℕcn 12263 ℕ0cn0 12523 ↑cexp 14098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-n0 12524 df-z 12611 df-uz 12876 df-seq 14039 df-exp 14099 |
This theorem is referenced by: digit1 14272 nnexpcld 14280 faclbnd4lem3 14330 faclbnd5 14333 climcndslem1 15881 climcndslem2 15882 climcnds 15883 harmonic 15891 geo2sum 15905 geo2lim 15907 ege2le3 16122 eftlub 16141 ef01bndlem 16216 expgcd 16596 phiprmpw 16809 pcdvdsb 16902 pcmptcl 16924 pcfac 16932 pockthi 16940 prmreclem3 16951 prmreclem5 16953 prmreclem6 16954 modxai 17101 1259lem5 17168 2503lem3 17172 4001lem4 17177 ovollb2lem 25536 ovoliunlem1 25550 ovoliunlem3 25552 dyadf 25639 dyadovol 25641 dyadss 25642 dyaddisjlem 25643 dyadmaxlem 25645 opnmbllem 25649 mbfi1fseqlem1 25764 mbfi1fseqlem3 25766 mbfi1fseqlem4 25767 mbfi1fseqlem5 25768 mbfi1fseqlem6 25769 aalioulem1 26388 aaliou2b 26397 aaliou3lem9 26406 log2cnv 27001 log2tlbnd 27002 log2ublem1 27003 log2ublem2 27004 log2ub 27006 zetacvg 27072 vmappw 27173 sgmnncl 27204 dvdsppwf1o 27243 0sgmppw 27256 1sgm2ppw 27258 vmasum 27274 mersenne 27285 perfect1 27286 perfectlem1 27287 perfectlem2 27288 perfect 27289 pcbcctr 27334 bclbnd 27338 bposlem2 27343 bposlem6 27347 bposlem8 27349 chebbnd1lem1 27527 rplogsumlem2 27543 ostth2lem3 27693 ostth3 27696 oddpwdc 34335 tgoldbachgt 34656 faclim2 35727 opnmbllem0 37642 heiborlem3 37799 heiborlem5 37801 heiborlem6 37802 heiborlem7 37803 heiborlem8 37804 heibor 37807 dvdsexpnn0 42347 hoicvrrex 46511 ovnsubaddlem2 46526 ovolval5lem1 46607 fmtnoprmfac2lem1 47490 fmtno4prm 47499 perfectALTVlem1 47645 perfectALTVlem2 47646 perfectALTV 47647 bgoldbachlt 47737 tgblthelfgott 47739 tgoldbachlt 47740 blenpw2 48427 nnpw2pb 48436 nnolog2flm1 48439 |
Copyright terms: Public domain | W3C validator |