| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnexpcl | Structured version Visualization version GIF version | ||
| Description: Closure of exponentiation of nonnegative integers. (Contributed by NM, 16-Dec-2005.) |
| Ref | Expression |
|---|---|
| nnexpcl | ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnsscn 12198 | . 2 ⊢ ℕ ⊆ ℂ | |
| 2 | nnmulcl 12217 | . 2 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 · 𝑦) ∈ ℕ) | |
| 3 | 1nn 12204 | . 2 ⊢ 1 ∈ ℕ | |
| 4 | 1, 2, 3 | expcllem 14044 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7390 ℕcn 12193 ℕ0cn0 12449 ↑cexp 14033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-seq 13974 df-exp 14034 |
| This theorem is referenced by: digit1 14209 nnexpcld 14217 faclbnd4lem3 14267 faclbnd5 14270 climcndslem1 15822 climcndslem2 15823 climcnds 15824 harmonic 15832 geo2sum 15846 geo2lim 15848 ege2le3 16063 eftlub 16084 ef01bndlem 16159 expgcd 16540 phiprmpw 16753 pcdvdsb 16847 pcmptcl 16869 pcfac 16877 pockthi 16885 prmreclem3 16896 prmreclem5 16898 prmreclem6 16899 modxai 17046 1259lem5 17112 2503lem3 17116 4001lem4 17121 ovollb2lem 25396 ovoliunlem1 25410 ovoliunlem3 25412 dyadf 25499 dyadovol 25501 dyadss 25502 dyaddisjlem 25503 dyadmaxlem 25505 opnmbllem 25509 mbfi1fseqlem1 25623 mbfi1fseqlem3 25625 mbfi1fseqlem4 25626 mbfi1fseqlem5 25627 mbfi1fseqlem6 25628 aalioulem1 26247 aaliou2b 26256 aaliou3lem9 26265 log2cnv 26861 log2tlbnd 26862 log2ublem1 26863 log2ublem2 26864 log2ub 26866 zetacvg 26932 vmappw 27033 sgmnncl 27064 dvdsppwf1o 27103 0sgmppw 27116 1sgm2ppw 27118 vmasum 27134 mersenne 27145 perfect1 27146 perfectlem1 27147 perfectlem2 27148 perfect 27149 pcbcctr 27194 bclbnd 27198 bposlem2 27203 bposlem6 27207 bposlem8 27209 chebbnd1lem1 27387 rplogsumlem2 27403 ostth2lem3 27553 ostth3 27556 oddpwdc 34352 tgoldbachgt 34661 faclim2 35742 opnmbllem0 37657 heiborlem3 37814 heiborlem5 37816 heiborlem6 37817 heiborlem7 37818 heiborlem8 37819 heibor 37822 dvdsexpnn0 42329 hoicvrrex 46561 ovnsubaddlem2 46576 ovolval5lem1 46657 fmtnoprmfac2lem1 47571 fmtno4prm 47580 perfectALTVlem1 47726 perfectALTVlem2 47727 perfectALTV 47728 bgoldbachlt 47818 tgblthelfgott 47820 tgoldbachlt 47821 blenpw2 48571 nnpw2pb 48580 nnolog2flm1 48583 |
| Copyright terms: Public domain | W3C validator |