| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnexpcl | Structured version Visualization version GIF version | ||
| Description: Closure of exponentiation of nonnegative integers. (Contributed by NM, 16-Dec-2005.) |
| Ref | Expression |
|---|---|
| nnexpcl | ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnsscn 12167 | . 2 ⊢ ℕ ⊆ ℂ | |
| 2 | nnmulcl 12186 | . 2 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 · 𝑦) ∈ ℕ) | |
| 3 | 1nn 12173 | . 2 ⊢ 1 ∈ ℕ | |
| 4 | 1, 2, 3 | expcllem 14013 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7369 ℕcn 12162 ℕ0cn0 12418 ↑cexp 14002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-seq 13943 df-exp 14003 |
| This theorem is referenced by: digit1 14178 nnexpcld 14186 faclbnd4lem3 14236 faclbnd5 14239 climcndslem1 15791 climcndslem2 15792 climcnds 15793 harmonic 15801 geo2sum 15815 geo2lim 15817 ege2le3 16032 eftlub 16053 ef01bndlem 16128 expgcd 16509 phiprmpw 16722 pcdvdsb 16816 pcmptcl 16838 pcfac 16846 pockthi 16854 prmreclem3 16865 prmreclem5 16867 prmreclem6 16868 modxai 17015 1259lem5 17081 2503lem3 17085 4001lem4 17090 ovollb2lem 25365 ovoliunlem1 25379 ovoliunlem3 25381 dyadf 25468 dyadovol 25470 dyadss 25471 dyaddisjlem 25472 dyadmaxlem 25474 opnmbllem 25478 mbfi1fseqlem1 25592 mbfi1fseqlem3 25594 mbfi1fseqlem4 25595 mbfi1fseqlem5 25596 mbfi1fseqlem6 25597 aalioulem1 26216 aaliou2b 26225 aaliou3lem9 26234 log2cnv 26830 log2tlbnd 26831 log2ublem1 26832 log2ublem2 26833 log2ub 26835 zetacvg 26901 vmappw 27002 sgmnncl 27033 dvdsppwf1o 27072 0sgmppw 27085 1sgm2ppw 27087 vmasum 27103 mersenne 27114 perfect1 27115 perfectlem1 27116 perfectlem2 27117 perfect 27118 pcbcctr 27163 bclbnd 27167 bposlem2 27172 bposlem6 27176 bposlem8 27178 chebbnd1lem1 27356 rplogsumlem2 27372 ostth2lem3 27522 ostth3 27525 oddpwdc 34318 tgoldbachgt 34627 faclim2 35708 opnmbllem0 37623 heiborlem3 37780 heiborlem5 37782 heiborlem6 37783 heiborlem7 37784 heiborlem8 37785 heibor 37788 dvdsexpnn0 42295 hoicvrrex 46527 ovnsubaddlem2 46542 ovolval5lem1 46623 fmtnoprmfac2lem1 47540 fmtno4prm 47549 perfectALTVlem1 47695 perfectALTVlem2 47696 perfectALTV 47697 bgoldbachlt 47787 tgblthelfgott 47789 tgoldbachlt 47790 blenpw2 48540 nnpw2pb 48549 nnolog2flm1 48552 |
| Copyright terms: Public domain | W3C validator |