| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnexpcl | Structured version Visualization version GIF version | ||
| Description: Closure of exponentiation of nonnegative integers. (Contributed by NM, 16-Dec-2005.) |
| Ref | Expression |
|---|---|
| nnexpcl | ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnsscn 12191 | . 2 ⊢ ℕ ⊆ ℂ | |
| 2 | nnmulcl 12210 | . 2 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 · 𝑦) ∈ ℕ) | |
| 3 | 1nn 12197 | . 2 ⊢ 1 ∈ ℕ | |
| 4 | 1, 2, 3 | expcllem 14037 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7387 ℕcn 12186 ℕ0cn0 12442 ↑cexp 14026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: digit1 14202 nnexpcld 14210 faclbnd4lem3 14260 faclbnd5 14263 climcndslem1 15815 climcndslem2 15816 climcnds 15817 harmonic 15825 geo2sum 15839 geo2lim 15841 ege2le3 16056 eftlub 16077 ef01bndlem 16152 expgcd 16533 phiprmpw 16746 pcdvdsb 16840 pcmptcl 16862 pcfac 16870 pockthi 16878 prmreclem3 16889 prmreclem5 16891 prmreclem6 16892 modxai 17039 1259lem5 17105 2503lem3 17109 4001lem4 17114 ovollb2lem 25389 ovoliunlem1 25403 ovoliunlem3 25405 dyadf 25492 dyadovol 25494 dyadss 25495 dyaddisjlem 25496 dyadmaxlem 25498 opnmbllem 25502 mbfi1fseqlem1 25616 mbfi1fseqlem3 25618 mbfi1fseqlem4 25619 mbfi1fseqlem5 25620 mbfi1fseqlem6 25621 aalioulem1 26240 aaliou2b 26249 aaliou3lem9 26258 log2cnv 26854 log2tlbnd 26855 log2ublem1 26856 log2ublem2 26857 log2ub 26859 zetacvg 26925 vmappw 27026 sgmnncl 27057 dvdsppwf1o 27096 0sgmppw 27109 1sgm2ppw 27111 vmasum 27127 mersenne 27138 perfect1 27139 perfectlem1 27140 perfectlem2 27141 perfect 27142 pcbcctr 27187 bclbnd 27191 bposlem2 27196 bposlem6 27200 bposlem8 27202 chebbnd1lem1 27380 rplogsumlem2 27396 ostth2lem3 27546 ostth3 27549 oddpwdc 34345 tgoldbachgt 34654 faclim2 35735 opnmbllem0 37650 heiborlem3 37807 heiborlem5 37809 heiborlem6 37810 heiborlem7 37811 heiborlem8 37812 heibor 37815 dvdsexpnn0 42322 hoicvrrex 46554 ovnsubaddlem2 46569 ovolval5lem1 46650 fmtnoprmfac2lem1 47567 fmtno4prm 47576 perfectALTVlem1 47722 perfectALTVlem2 47723 perfectALTV 47724 bgoldbachlt 47814 tgblthelfgott 47816 tgoldbachlt 47817 blenpw2 48567 nnpw2pb 48576 nnolog2flm1 48579 |
| Copyright terms: Public domain | W3C validator |