Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnexpcl | Structured version Visualization version GIF version |
Description: Closure of exponentiation of nonnegative integers. (Contributed by NM, 16-Dec-2005.) |
Ref | Expression |
---|---|
nnexpcl | ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnsscn 11987 | . 2 ⊢ ℕ ⊆ ℂ | |
2 | nnmulcl 12006 | . 2 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 · 𝑦) ∈ ℕ) | |
3 | 1nn 11993 | . 2 ⊢ 1 ∈ ℕ | |
4 | 1, 2, 3 | expcllem 13802 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2107 (class class class)co 7284 ℕcn 11982 ℕ0cn0 12242 ↑cexp 13791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-nn 11983 df-n0 12243 df-z 12329 df-uz 12592 df-seq 13731 df-exp 13792 |
This theorem is referenced by: digit1 13961 nnexpcld 13969 faclbnd4lem3 14018 faclbnd5 14021 climcndslem1 15570 climcndslem2 15571 climcnds 15572 harmonic 15580 geo2sum 15594 geo2lim 15596 ege2le3 15808 eftlub 15827 ef01bndlem 15902 phiprmpw 16486 pcdvdsb 16579 pcmptcl 16601 pcfac 16609 pockthi 16617 prmreclem3 16628 prmreclem5 16630 prmreclem6 16631 modxai 16778 1259lem5 16845 2503lem3 16849 4001lem4 16854 ovollb2lem 24661 ovoliunlem1 24675 ovoliunlem3 24677 dyadf 24764 dyadovol 24766 dyadss 24767 dyaddisjlem 24768 dyadmaxlem 24770 opnmbllem 24774 mbfi1fseqlem1 24889 mbfi1fseqlem3 24891 mbfi1fseqlem4 24892 mbfi1fseqlem5 24893 mbfi1fseqlem6 24894 aalioulem1 25501 aaliou2b 25510 aaliou3lem9 25519 log2cnv 26103 log2tlbnd 26104 log2ublem1 26105 log2ublem2 26106 log2ub 26108 zetacvg 26173 vmappw 26274 sgmnncl 26305 dvdsppwf1o 26344 0sgmppw 26355 1sgm2ppw 26357 vmasum 26373 mersenne 26384 perfect1 26385 perfectlem1 26386 perfectlem2 26387 perfect 26388 pcbcctr 26433 bclbnd 26437 bposlem2 26442 bposlem6 26446 bposlem8 26448 chebbnd1lem1 26626 rplogsumlem2 26642 ostth2lem3 26792 ostth3 26795 oddpwdc 32330 tgoldbachgt 32652 faclim2 33723 opnmbllem0 35822 heiborlem3 35980 heiborlem5 35982 heiborlem6 35983 heiborlem7 35984 heiborlem8 35985 heibor 35988 expgcd 40341 dvdsexpnn0 40348 hoicvrrex 44101 ovnsubaddlem2 44116 ovolval5lem1 44197 fmtnoprmfac2lem1 45029 fmtno4prm 45038 perfectALTVlem1 45184 perfectALTVlem2 45185 perfectALTV 45186 bgoldbachlt 45276 tgblthelfgott 45278 tgoldbachlt 45279 blenpw2 45935 nnpw2pb 45944 nnolog2flm1 45947 |
Copyright terms: Public domain | W3C validator |