| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnexpcl | Structured version Visualization version GIF version | ||
| Description: Closure of exponentiation of nonnegative integers. (Contributed by NM, 16-Dec-2005.) |
| Ref | Expression |
|---|---|
| nnexpcl | ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnsscn 12152 | . 2 ⊢ ℕ ⊆ ℂ | |
| 2 | nnmulcl 12171 | . 2 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 · 𝑦) ∈ ℕ) | |
| 3 | 1nn 12158 | . 2 ⊢ 1 ∈ ℕ | |
| 4 | 1, 2, 3 | expcllem 13998 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7353 ℕcn 12147 ℕ0cn0 12403 ↑cexp 13987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-n0 12404 df-z 12491 df-uz 12755 df-seq 13928 df-exp 13988 |
| This theorem is referenced by: digit1 14163 nnexpcld 14171 faclbnd4lem3 14221 faclbnd5 14224 climcndslem1 15775 climcndslem2 15776 climcnds 15777 harmonic 15785 geo2sum 15799 geo2lim 15801 ege2le3 16016 eftlub 16037 ef01bndlem 16112 expgcd 16493 phiprmpw 16706 pcdvdsb 16800 pcmptcl 16822 pcfac 16830 pockthi 16838 prmreclem3 16849 prmreclem5 16851 prmreclem6 16852 modxai 16999 1259lem5 17065 2503lem3 17069 4001lem4 17074 ovollb2lem 25406 ovoliunlem1 25420 ovoliunlem3 25422 dyadf 25509 dyadovol 25511 dyadss 25512 dyaddisjlem 25513 dyadmaxlem 25515 opnmbllem 25519 mbfi1fseqlem1 25633 mbfi1fseqlem3 25635 mbfi1fseqlem4 25636 mbfi1fseqlem5 25637 mbfi1fseqlem6 25638 aalioulem1 26257 aaliou2b 26266 aaliou3lem9 26275 log2cnv 26871 log2tlbnd 26872 log2ublem1 26873 log2ublem2 26874 log2ub 26876 zetacvg 26942 vmappw 27043 sgmnncl 27074 dvdsppwf1o 27113 0sgmppw 27126 1sgm2ppw 27128 vmasum 27144 mersenne 27155 perfect1 27156 perfectlem1 27157 perfectlem2 27158 perfect 27159 pcbcctr 27204 bclbnd 27208 bposlem2 27213 bposlem6 27217 bposlem8 27219 chebbnd1lem1 27397 rplogsumlem2 27413 ostth2lem3 27563 ostth3 27566 oddpwdc 34341 tgoldbachgt 34650 faclim2 35740 opnmbllem0 37655 heiborlem3 37812 heiborlem5 37814 heiborlem6 37815 heiborlem7 37816 heiborlem8 37817 heibor 37820 dvdsexpnn0 42327 hoicvrrex 46557 ovnsubaddlem2 46572 ovolval5lem1 46653 fmtnoprmfac2lem1 47570 fmtno4prm 47579 perfectALTVlem1 47725 perfectALTVlem2 47726 perfectALTV 47727 bgoldbachlt 47817 tgblthelfgott 47819 tgoldbachlt 47820 blenpw2 48583 nnpw2pb 48592 nnolog2flm1 48595 |
| Copyright terms: Public domain | W3C validator |