| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnexpcl | Structured version Visualization version GIF version | ||
| Description: Closure of exponentiation of nonnegative integers. (Contributed by NM, 16-Dec-2005.) |
| Ref | Expression |
|---|---|
| nnexpcl | ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnsscn 12245 | . 2 ⊢ ℕ ⊆ ℂ | |
| 2 | nnmulcl 12264 | . 2 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 · 𝑦) ∈ ℕ) | |
| 3 | 1nn 12251 | . 2 ⊢ 1 ∈ ℕ | |
| 4 | 1, 2, 3 | expcllem 14090 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 (class class class)co 7405 ℕcn 12240 ℕ0cn0 12501 ↑cexp 14079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-seq 14020 df-exp 14080 |
| This theorem is referenced by: digit1 14255 nnexpcld 14263 faclbnd4lem3 14313 faclbnd5 14316 climcndslem1 15865 climcndslem2 15866 climcnds 15867 harmonic 15875 geo2sum 15889 geo2lim 15891 ege2le3 16106 eftlub 16127 ef01bndlem 16202 expgcd 16582 phiprmpw 16795 pcdvdsb 16889 pcmptcl 16911 pcfac 16919 pockthi 16927 prmreclem3 16938 prmreclem5 16940 prmreclem6 16941 modxai 17088 1259lem5 17154 2503lem3 17158 4001lem4 17163 ovollb2lem 25441 ovoliunlem1 25455 ovoliunlem3 25457 dyadf 25544 dyadovol 25546 dyadss 25547 dyaddisjlem 25548 dyadmaxlem 25550 opnmbllem 25554 mbfi1fseqlem1 25668 mbfi1fseqlem3 25670 mbfi1fseqlem4 25671 mbfi1fseqlem5 25672 mbfi1fseqlem6 25673 aalioulem1 26292 aaliou2b 26301 aaliou3lem9 26310 log2cnv 26906 log2tlbnd 26907 log2ublem1 26908 log2ublem2 26909 log2ub 26911 zetacvg 26977 vmappw 27078 sgmnncl 27109 dvdsppwf1o 27148 0sgmppw 27161 1sgm2ppw 27163 vmasum 27179 mersenne 27190 perfect1 27191 perfectlem1 27192 perfectlem2 27193 perfect 27194 pcbcctr 27239 bclbnd 27243 bposlem2 27248 bposlem6 27252 bposlem8 27254 chebbnd1lem1 27432 rplogsumlem2 27448 ostth2lem3 27598 ostth3 27601 oddpwdc 34386 tgoldbachgt 34695 faclim2 35765 opnmbllem0 37680 heiborlem3 37837 heiborlem5 37839 heiborlem6 37840 heiborlem7 37841 heiborlem8 37842 heibor 37845 dvdsexpnn0 42383 hoicvrrex 46585 ovnsubaddlem2 46600 ovolval5lem1 46681 fmtnoprmfac2lem1 47580 fmtno4prm 47589 perfectALTVlem1 47735 perfectALTVlem2 47736 perfectALTV 47737 bgoldbachlt 47827 tgblthelfgott 47829 tgoldbachlt 47830 blenpw2 48558 nnpw2pb 48567 nnolog2flm1 48570 |
| Copyright terms: Public domain | W3C validator |