| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnexpcl | Structured version Visualization version GIF version | ||
| Description: Closure of exponentiation of nonnegative integers. (Contributed by NM, 16-Dec-2005.) |
| Ref | Expression |
|---|---|
| nnexpcl | ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnsscn 12141 | . 2 ⊢ ℕ ⊆ ℂ | |
| 2 | nnmulcl 12160 | . 2 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 · 𝑦) ∈ ℕ) | |
| 3 | 1nn 12147 | . 2 ⊢ 1 ∈ ℕ | |
| 4 | 1, 2, 3 | expcllem 13986 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 (class class class)co 7355 ℕcn 12136 ℕ0cn0 12392 ↑cexp 13975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-n0 12393 df-z 12480 df-uz 12743 df-seq 13916 df-exp 13976 |
| This theorem is referenced by: digit1 14151 nnexpcld 14159 faclbnd4lem3 14209 faclbnd5 14212 climcndslem1 15763 climcndslem2 15764 climcnds 15765 harmonic 15773 geo2sum 15787 geo2lim 15789 ege2le3 16004 eftlub 16025 ef01bndlem 16100 expgcd 16481 phiprmpw 16694 pcdvdsb 16788 pcmptcl 16810 pcfac 16818 pockthi 16826 prmreclem3 16837 prmreclem5 16839 prmreclem6 16840 modxai 16987 1259lem5 17053 2503lem3 17057 4001lem4 17062 ovollb2lem 25436 ovoliunlem1 25450 ovoliunlem3 25452 dyadf 25539 dyadovol 25541 dyadss 25542 dyaddisjlem 25543 dyadmaxlem 25545 opnmbllem 25549 mbfi1fseqlem1 25663 mbfi1fseqlem3 25665 mbfi1fseqlem4 25666 mbfi1fseqlem5 25667 mbfi1fseqlem6 25668 aalioulem1 26287 aaliou2b 26296 aaliou3lem9 26305 log2cnv 26901 log2tlbnd 26902 log2ublem1 26903 log2ublem2 26904 log2ub 26906 zetacvg 26972 vmappw 27073 sgmnncl 27104 dvdsppwf1o 27143 0sgmppw 27156 1sgm2ppw 27158 vmasum 27174 mersenne 27185 perfect1 27186 perfectlem1 27187 perfectlem2 27188 perfect 27189 pcbcctr 27234 bclbnd 27238 bposlem2 27243 bposlem6 27247 bposlem8 27249 chebbnd1lem1 27427 rplogsumlem2 27443 ostth2lem3 27593 ostth3 27596 oddpwdc 34439 tgoldbachgt 34748 faclim2 35864 opnmbllem0 37769 heiborlem3 37926 heiborlem5 37928 heiborlem6 37929 heiborlem7 37930 heiborlem8 37931 heibor 37934 dvdsexpnn0 42504 hoicvrrex 46716 ovnsubaddlem2 46731 ovolval5lem1 46812 fmtnoprmfac2lem1 47728 fmtno4prm 47737 perfectALTVlem1 47883 perfectALTVlem2 47884 perfectALTV 47885 bgoldbachlt 47975 tgblthelfgott 47977 tgoldbachlt 47978 blenpw2 48740 nnpw2pb 48749 nnolog2flm1 48752 |
| Copyright terms: Public domain | W3C validator |