| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnexpcl | Structured version Visualization version GIF version | ||
| Description: Closure of exponentiation of nonnegative integers. (Contributed by NM, 16-Dec-2005.) |
| Ref | Expression |
|---|---|
| nnexpcl | ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnsscn 12125 | . 2 ⊢ ℕ ⊆ ℂ | |
| 2 | nnmulcl 12144 | . 2 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 · 𝑦) ∈ ℕ) | |
| 3 | 1nn 12131 | . 2 ⊢ 1 ∈ ℕ | |
| 4 | 1, 2, 3 | expcllem 13974 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 (class class class)co 7341 ℕcn 12120 ℕ0cn0 12376 ↑cexp 13963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-seq 13904 df-exp 13964 |
| This theorem is referenced by: digit1 14139 nnexpcld 14147 faclbnd4lem3 14197 faclbnd5 14200 climcndslem1 15751 climcndslem2 15752 climcnds 15753 harmonic 15761 geo2sum 15775 geo2lim 15777 ege2le3 15992 eftlub 16013 ef01bndlem 16088 expgcd 16469 phiprmpw 16682 pcdvdsb 16776 pcmptcl 16798 pcfac 16806 pockthi 16814 prmreclem3 16825 prmreclem5 16827 prmreclem6 16828 modxai 16975 1259lem5 17041 2503lem3 17045 4001lem4 17050 ovollb2lem 25411 ovoliunlem1 25425 ovoliunlem3 25427 dyadf 25514 dyadovol 25516 dyadss 25517 dyaddisjlem 25518 dyadmaxlem 25520 opnmbllem 25524 mbfi1fseqlem1 25638 mbfi1fseqlem3 25640 mbfi1fseqlem4 25641 mbfi1fseqlem5 25642 mbfi1fseqlem6 25643 aalioulem1 26262 aaliou2b 26271 aaliou3lem9 26280 log2cnv 26876 log2tlbnd 26877 log2ublem1 26878 log2ublem2 26879 log2ub 26881 zetacvg 26947 vmappw 27048 sgmnncl 27079 dvdsppwf1o 27118 0sgmppw 27131 1sgm2ppw 27133 vmasum 27149 mersenne 27160 perfect1 27161 perfectlem1 27162 perfectlem2 27163 perfect 27164 pcbcctr 27209 bclbnd 27213 bposlem2 27218 bposlem6 27222 bposlem8 27224 chebbnd1lem1 27402 rplogsumlem2 27418 ostth2lem3 27568 ostth3 27571 oddpwdc 34359 tgoldbachgt 34668 faclim2 35784 opnmbllem0 37696 heiborlem3 37853 heiborlem5 37855 heiborlem6 37856 heiborlem7 37857 heiborlem8 37858 heibor 37861 dvdsexpnn0 42367 hoicvrrex 46594 ovnsubaddlem2 46609 ovolval5lem1 46690 fmtnoprmfac2lem1 47597 fmtno4prm 47606 perfectALTVlem1 47752 perfectALTVlem2 47753 perfectALTV 47754 bgoldbachlt 47844 tgblthelfgott 47846 tgoldbachlt 47847 blenpw2 48610 nnpw2pb 48619 nnolog2flm1 48622 |
| Copyright terms: Public domain | W3C validator |