Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnexpcl | Structured version Visualization version GIF version |
Description: Closure of exponentiation of nonnegative integers. (Contributed by NM, 16-Dec-2005.) |
Ref | Expression |
---|---|
nnexpcl | ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnsscn 11908 | . 2 ⊢ ℕ ⊆ ℂ | |
2 | nnmulcl 11927 | . 2 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 · 𝑦) ∈ ℕ) | |
3 | 1nn 11914 | . 2 ⊢ 1 ∈ ℕ | |
4 | 1, 2, 3 | expcllem 13721 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 (class class class)co 7255 ℕcn 11903 ℕ0cn0 12163 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-exp 13711 |
This theorem is referenced by: digit1 13880 nnexpcld 13888 faclbnd4lem3 13937 faclbnd5 13940 climcndslem1 15489 climcndslem2 15490 climcnds 15491 harmonic 15499 geo2sum 15513 geo2lim 15515 ege2le3 15727 eftlub 15746 ef01bndlem 15821 phiprmpw 16405 pcdvdsb 16498 pcmptcl 16520 pcfac 16528 pockthi 16536 prmreclem3 16547 prmreclem5 16549 prmreclem6 16550 modxai 16697 1259lem5 16764 2503lem3 16768 4001lem4 16773 ovollb2lem 24557 ovoliunlem1 24571 ovoliunlem3 24573 dyadf 24660 dyadovol 24662 dyadss 24663 dyaddisjlem 24664 dyadmaxlem 24666 opnmbllem 24670 mbfi1fseqlem1 24785 mbfi1fseqlem3 24787 mbfi1fseqlem4 24788 mbfi1fseqlem5 24789 mbfi1fseqlem6 24790 aalioulem1 25397 aaliou2b 25406 aaliou3lem9 25415 log2cnv 25999 log2tlbnd 26000 log2ublem1 26001 log2ublem2 26002 log2ub 26004 zetacvg 26069 vmappw 26170 sgmnncl 26201 dvdsppwf1o 26240 0sgmppw 26251 1sgm2ppw 26253 vmasum 26269 mersenne 26280 perfect1 26281 perfectlem1 26282 perfectlem2 26283 perfect 26284 pcbcctr 26329 bclbnd 26333 bposlem2 26338 bposlem6 26342 bposlem8 26344 chebbnd1lem1 26522 rplogsumlem2 26538 ostth2lem3 26688 ostth3 26691 oddpwdc 32221 tgoldbachgt 32543 faclim2 33620 opnmbllem0 35740 heiborlem3 35898 heiborlem5 35900 heiborlem6 35901 heiborlem7 35902 heiborlem8 35903 heibor 35906 expgcd 40255 dvdsexpnn0 40262 hoicvrrex 43984 ovnsubaddlem2 43999 ovolval5lem1 44080 fmtnoprmfac2lem1 44906 fmtno4prm 44915 perfectALTVlem1 45061 perfectALTVlem2 45062 perfectALTV 45063 bgoldbachlt 45153 tgblthelfgott 45155 tgoldbachlt 45156 blenpw2 45812 nnpw2pb 45821 nnolog2flm1 45824 |
Copyright terms: Public domain | W3C validator |