Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > decadd | Structured version Visualization version GIF version |
Description: Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decma.a | ⊢ 𝐴 ∈ ℕ0 |
decma.b | ⊢ 𝐵 ∈ ℕ0 |
decma.c | ⊢ 𝐶 ∈ ℕ0 |
decma.d | ⊢ 𝐷 ∈ ℕ0 |
decma.m | ⊢ 𝑀 = ;𝐴𝐵 |
decma.n | ⊢ 𝑁 = ;𝐶𝐷 |
decadd.e | ⊢ (𝐴 + 𝐶) = 𝐸 |
decadd.f | ⊢ (𝐵 + 𝐷) = 𝐹 |
Ref | Expression |
---|---|
decadd | ⊢ (𝑀 + 𝑁) = ;𝐸𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 12155 | . . 3 ⊢ ;10 ∈ ℕ0 | |
2 | decma.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
3 | decma.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
4 | decma.c | . . 3 ⊢ 𝐶 ∈ ℕ0 | |
5 | decma.d | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
6 | decma.m | . . . 4 ⊢ 𝑀 = ;𝐴𝐵 | |
7 | dfdec10 12140 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
8 | 6, 7 | eqtri 2781 | . . 3 ⊢ 𝑀 = ((;10 · 𝐴) + 𝐵) |
9 | decma.n | . . . 4 ⊢ 𝑁 = ;𝐶𝐷 | |
10 | dfdec10 12140 | . . . 4 ⊢ ;𝐶𝐷 = ((;10 · 𝐶) + 𝐷) | |
11 | 9, 10 | eqtri 2781 | . . 3 ⊢ 𝑁 = ((;10 · 𝐶) + 𝐷) |
12 | decadd.e | . . 3 ⊢ (𝐴 + 𝐶) = 𝐸 | |
13 | decadd.f | . . 3 ⊢ (𝐵 + 𝐷) = 𝐹 | |
14 | 1, 2, 3, 4, 5, 8, 11, 12, 13 | numadd 12184 | . 2 ⊢ (𝑀 + 𝑁) = ((;10 · 𝐸) + 𝐹) |
15 | dfdec10 12140 | . 2 ⊢ ;𝐸𝐹 = ((;10 · 𝐸) + 𝐹) | |
16 | 14, 15 | eqtr4i 2784 | 1 ⊢ (𝑀 + 𝑁) = ;𝐸𝐹 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 (class class class)co 7150 0cc0 10575 1c1 10576 + caddc 10578 · cmul 10580 ℕ0cn0 11934 ;cdc 12137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-om 7580 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-ltxr 10718 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-dec 12138 |
This theorem is referenced by: decaddm10 12196 decaddi 12197 10p10e20 12232 dec5dvds2 16456 2exp16 16482 37prm 16512 43prm 16513 317prm 16517 631prm 16518 1259lem2 16523 1259lem3 16524 1259lem4 16525 2503lem1 16528 2503lem2 16529 4001lem1 16532 4001lem2 16533 4001lem3 16534 log2ublem3 25633 log2ub 25634 1kp2ke3k 28330 hgt750lemd 32147 hgt750lem2 32151 12gcd5e1 39592 3lexlogpow5ineq1 39643 decpmul 39840 sqdeccom12 39841 sq3deccom12 39842 ex-decpmul 39844 resqrtvalex 40740 imsqrtvalex 40741 fmtno5lem4 44463 257prm 44468 fmtno4prmfac 44479 fmtno4nprmfac193 44481 fmtno5faclem3 44488 fmtno5fac 44489 |
Copyright terms: Public domain | W3C validator |