MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decadd Structured version   Visualization version   GIF version

Theorem decadd 12144
Description: Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decma.a 𝐴 ∈ ℕ0
decma.b 𝐵 ∈ ℕ0
decma.c 𝐶 ∈ ℕ0
decma.d 𝐷 ∈ ℕ0
decma.m 𝑀 = 𝐴𝐵
decma.n 𝑁 = 𝐶𝐷
decadd.e (𝐴 + 𝐶) = 𝐸
decadd.f (𝐵 + 𝐷) = 𝐹
Assertion
Ref Expression
decadd (𝑀 + 𝑁) = 𝐸𝐹

Proof of Theorem decadd
StepHypRef Expression
1 10nn0 12108 . . 3 10 ∈ ℕ0
2 decma.a . . 3 𝐴 ∈ ℕ0
3 decma.b . . 3 𝐵 ∈ ℕ0
4 decma.c . . 3 𝐶 ∈ ℕ0
5 decma.d . . 3 𝐷 ∈ ℕ0
6 decma.m . . . 4 𝑀 = 𝐴𝐵
7 dfdec10 12093 . . . 4 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
86, 7eqtri 2848 . . 3 𝑀 = ((10 · 𝐴) + 𝐵)
9 decma.n . . . 4 𝑁 = 𝐶𝐷
10 dfdec10 12093 . . . 4 𝐶𝐷 = ((10 · 𝐶) + 𝐷)
119, 10eqtri 2848 . . 3 𝑁 = ((10 · 𝐶) + 𝐷)
12 decadd.e . . 3 (𝐴 + 𝐶) = 𝐸
13 decadd.f . . 3 (𝐵 + 𝐷) = 𝐹
141, 2, 3, 4, 5, 8, 11, 12, 13numadd 12137 . 2 (𝑀 + 𝑁) = ((10 · 𝐸) + 𝐹)
15 dfdec10 12093 . 2 𝐸𝐹 = ((10 · 𝐸) + 𝐹)
1614, 15eqtr4i 2851 1 (𝑀 + 𝑁) = 𝐸𝐹
Colors of variables: wff setvar class
Syntax hints:   = wceq 1530  wcel 2106  (class class class)co 7151  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  0cn0 11889  cdc 12090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-ov 7154  df-om 7572  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-ltxr 10672  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-dec 12091
This theorem is referenced by:  decaddm10  12149  decaddi  12150  10p10e20  12185  dec5dvds2  16393  2exp16  16416  37prm  16446  43prm  16447  317prm  16451  631prm  16452  1259lem2  16457  1259lem3  16458  1259lem4  16459  2503lem1  16462  2503lem2  16463  4001lem1  16466  4001lem2  16467  4001lem3  16468  log2ublem3  25440  log2ub  25441  1kp2ke3k  28140  hgt750lemd  31806  hgt750lem2  31810  decpmul  39038  sqdeccom12  39039  sq3deccom12  39040  ex-decpmul  39042  fmtno5lem4  43547  257prm  43552  fmtno4prmfac  43563  fmtno4nprmfac193  43565  fmtno5faclem3  43572  fmtno5fac  43573
  Copyright terms: Public domain W3C validator