![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decadd | Structured version Visualization version GIF version |
Description: Add two numerals ๐ and ๐ (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decma.a | โข ๐ด โ โ0 |
decma.b | โข ๐ต โ โ0 |
decma.c | โข ๐ถ โ โ0 |
decma.d | โข ๐ท โ โ0 |
decma.m | โข ๐ = ;๐ด๐ต |
decma.n | โข ๐ = ;๐ถ๐ท |
decadd.e | โข (๐ด + ๐ถ) = ๐ธ |
decadd.f | โข (๐ต + ๐ท) = ๐น |
Ref | Expression |
---|---|
decadd | โข (๐ + ๐) = ;๐ธ๐น |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 12694 | . . 3 โข ;10 โ โ0 | |
2 | decma.a | . . 3 โข ๐ด โ โ0 | |
3 | decma.b | . . 3 โข ๐ต โ โ0 | |
4 | decma.c | . . 3 โข ๐ถ โ โ0 | |
5 | decma.d | . . 3 โข ๐ท โ โ0 | |
6 | decma.m | . . . 4 โข ๐ = ;๐ด๐ต | |
7 | dfdec10 12679 | . . . 4 โข ;๐ด๐ต = ((;10 ยท ๐ด) + ๐ต) | |
8 | 6, 7 | eqtri 2752 | . . 3 โข ๐ = ((;10 ยท ๐ด) + ๐ต) |
9 | decma.n | . . . 4 โข ๐ = ;๐ถ๐ท | |
10 | dfdec10 12679 | . . . 4 โข ;๐ถ๐ท = ((;10 ยท ๐ถ) + ๐ท) | |
11 | 9, 10 | eqtri 2752 | . . 3 โข ๐ = ((;10 ยท ๐ถ) + ๐ท) |
12 | decadd.e | . . 3 โข (๐ด + ๐ถ) = ๐ธ | |
13 | decadd.f | . . 3 โข (๐ต + ๐ท) = ๐น | |
14 | 1, 2, 3, 4, 5, 8, 11, 12, 13 | numadd 12723 | . 2 โข (๐ + ๐) = ((;10 ยท ๐ธ) + ๐น) |
15 | dfdec10 12679 | . 2 โข ;๐ธ๐น = ((;10 ยท ๐ธ) + ๐น) | |
16 | 14, 15 | eqtr4i 2755 | 1 โข (๐ + ๐) = ;๐ธ๐น |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 โ wcel 2098 (class class class)co 7402 0cc0 11107 1c1 11108 + caddc 11110 ยท cmul 11112 โ0cn0 12471 ;cdc 12676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11249 df-mnf 11250 df-ltxr 11252 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-dec 12677 |
This theorem is referenced by: decaddm10 12735 decaddi 12736 10p10e20 12771 dec5dvds2 17003 2exp16 17029 37prm 17059 43prm 17060 317prm 17064 631prm 17065 1259lem2 17070 1259lem3 17071 1259lem4 17072 2503lem1 17075 2503lem2 17076 4001lem1 17079 4001lem2 17080 4001lem3 17081 log2ublem3 26821 log2ub 26822 1kp2ke3k 30194 hgt750lemd 34179 hgt750lem2 34183 12gcd5e1 41375 3lexlogpow5ineq1 41426 decpmul 41732 sqdeccom12 41733 sq3deccom12 41734 ex-decpmul 41738 resqrtvalex 42946 imsqrtvalex 42947 fmtno5lem4 46770 257prm 46775 fmtno4prmfac 46786 fmtno4nprmfac193 46788 fmtno5faclem3 46795 fmtno5fac 46796 |
Copyright terms: Public domain | W3C validator |