| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decsucc | Structured version Visualization version GIF version | ||
| Description: The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| decsucc.1 | ⊢ 𝐴 ∈ ℕ0 |
| decsucc.2 | ⊢ (𝐴 + 1) = 𝐵 |
| decsucc.3 | ⊢ 𝑁 = ;𝐴9 |
| Ref | Expression |
|---|---|
| decsucc | ⊢ (𝑁 + 1) = ;𝐵0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9nn0 12405 | . . 3 ⊢ 9 ∈ ℕ0 | |
| 2 | 9p1e10 12590 | . . . 4 ⊢ (9 + 1) = ;10 | |
| 3 | 2 | eqcomi 2740 | . . 3 ⊢ ;10 = (9 + 1) |
| 4 | decsucc.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 5 | decsucc.2 | . . 3 ⊢ (𝐴 + 1) = 𝐵 | |
| 6 | decsucc.3 | . . . 4 ⊢ 𝑁 = ;𝐴9 | |
| 7 | dfdec10 12591 | . . . 4 ⊢ ;𝐴9 = ((;10 · 𝐴) + 9) | |
| 8 | 6, 7 | eqtri 2754 | . . 3 ⊢ 𝑁 = ((;10 · 𝐴) + 9) |
| 9 | 1, 3, 4, 5, 8 | numsucc 12628 | . 2 ⊢ (𝑁 + 1) = ((;10 · 𝐵) + 0) |
| 10 | dfdec10 12591 | . 2 ⊢ ;𝐵0 = ((;10 · 𝐵) + 0) | |
| 11 | 9, 10 | eqtr4i 2757 | 1 ⊢ (𝑁 + 1) = ;𝐵0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 9c9 12187 ℕ0cn0 12381 ;cdc 12588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-dec 12589 |
| This theorem is referenced by: sq10e99m1 14172 1259lem3 17044 1259lem4 17045 1259lem5 17046 2503lem2 17049 sqdeccom12 42328 fmtno5lem3 47592 tgoldbachlt 47853 |
| Copyright terms: Public domain | W3C validator |