Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0addcli | Structured version Visualization version GIF version |
Description: Closure of addition of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
nn0addcli.1 | ⊢ 𝑀 ∈ ℕ0 |
nn0addcli.2 | ⊢ 𝑁 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0addcli | ⊢ (𝑀 + 𝑁) ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0addcli.1 | . 2 ⊢ 𝑀 ∈ ℕ0 | |
2 | nn0addcli.2 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
3 | nn0addcl 12173 | . 2 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝑀 + 𝑁) ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2112 (class class class)co 7252 + caddc 10780 ℕ0cn0 12138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-ov 7255 df-om 7685 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-pnf 10917 df-mnf 10918 df-ltxr 10920 df-nn 11879 df-n0 12139 |
This theorem is referenced by: numcl 12354 deccl 12356 numsucc 12381 nn0opthlem1 13885 nn0opthlem2 13886 nn0opthi 13887 faclbnd4lem1 13910 mod2xnegi 16675 modsubi 16676 dscmet 23609 dpadd2 31061 dpmul 31064 3lexlogpow5ineq1 39969 aks4d1p1p7 39988 235t711 40212 |
Copyright terms: Public domain | W3C validator |