Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0addcli | Structured version Visualization version GIF version |
Description: Closure of addition of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
nn0addcli.1 | ⊢ 𝑀 ∈ ℕ0 |
nn0addcli.2 | ⊢ 𝑁 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0addcli | ⊢ (𝑀 + 𝑁) ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0addcli.1 | . 2 ⊢ 𝑀 ∈ ℕ0 | |
2 | nn0addcli.2 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
3 | nn0addcl 12268 | . 2 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ (𝑀 + 𝑁) ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 (class class class)co 7271 + caddc 10875 ℕ0cn0 12233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-ltxr 11015 df-nn 11974 df-n0 12234 |
This theorem is referenced by: numcl 12449 deccl 12451 numsucc 12476 nn0opthlem1 13980 nn0opthlem2 13981 nn0opthi 13982 faclbnd4lem1 14005 mod2xnegi 16770 modsubi 16771 dscmet 23726 dpadd2 31180 dpmul 31183 3lexlogpow5ineq1 40059 aks4d1p1p7 40079 235t711 40316 |
Copyright terms: Public domain | W3C validator |