Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > o1add | Structured version Visualization version GIF version |
Description: The sum of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Fan Zheng, 14-Jul-2016.) |
Ref | Expression |
---|---|
o1add | ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹 ∘f + 𝐺) ∈ 𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | readdcl 10672 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) | |
2 | addcl 10671 | . 2 ⊢ ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑚 + 𝑛) ∈ ℂ) | |
3 | simp2l 1197 | . . . . . 6 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → 𝑚 ∈ ℂ) | |
4 | simp2r 1198 | . . . . . 6 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → 𝑛 ∈ ℂ) | |
5 | 3, 4 | addcld 10712 | . . . . 5 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (𝑚 + 𝑛) ∈ ℂ) |
6 | 5 | abscld 14858 | . . . 4 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘(𝑚 + 𝑛)) ∈ ℝ) |
7 | 3 | abscld 14858 | . . . . 5 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘𝑚) ∈ ℝ) |
8 | 4 | abscld 14858 | . . . . 5 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘𝑛) ∈ ℝ) |
9 | 7, 8 | readdcld 10722 | . . . 4 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → ((abs‘𝑚) + (abs‘𝑛)) ∈ ℝ) |
10 | simp1l 1195 | . . . . 5 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → 𝑥 ∈ ℝ) | |
11 | simp1r 1196 | . . . . 5 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → 𝑦 ∈ ℝ) | |
12 | 10, 11 | readdcld 10722 | . . . 4 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (𝑥 + 𝑦) ∈ ℝ) |
13 | 3, 4 | abstrid 14878 | . . . 4 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘(𝑚 + 𝑛)) ≤ ((abs‘𝑚) + (abs‘𝑛))) |
14 | simp3l 1199 | . . . . 5 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘𝑚) ≤ 𝑥) | |
15 | simp3r 1200 | . . . . 5 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘𝑛) ≤ 𝑦) | |
16 | 7, 8, 10, 11, 14, 15 | le2addd 11311 | . . . 4 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → ((abs‘𝑚) + (abs‘𝑛)) ≤ (𝑥 + 𝑦)) |
17 | 6, 9, 12, 13, 16 | letrd 10849 | . . 3 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘(𝑚 + 𝑛)) ≤ (𝑥 + 𝑦)) |
18 | 17 | 3expia 1119 | . 2 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ)) → (((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦) → (abs‘(𝑚 + 𝑛)) ≤ (𝑥 + 𝑦))) |
19 | 1, 2, 18 | o1of2 15031 | 1 ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹 ∘f + 𝐺) ∈ 𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1085 ∈ wcel 2112 class class class wbr 5037 ‘cfv 6341 (class class class)co 7157 ∘f cof 7410 ℂcc 10587 ℝcr 10588 + caddc 10592 ≤ cle 10728 abscabs 14655 𝑂(1)co1 14905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-cnex 10645 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 ax-pre-sup 10667 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-iun 4889 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-of 7412 df-om 7587 df-2nd 7701 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-er 8306 df-pm 8426 df-en 8542 df-dom 8543 df-sdom 8544 df-sup 8953 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-div 11350 df-nn 11689 df-2 11751 df-3 11752 df-n0 11949 df-z 12035 df-uz 12297 df-rp 12445 df-ico 12799 df-seq 13433 df-exp 13494 df-cj 14520 df-re 14521 df-im 14522 df-sqrt 14656 df-abs 14657 df-o1 14909 |
This theorem is referenced by: o1add2 15042 o1dif 15048 fsumo1 15229 mudivsum 26228 selberglem2 26244 pntrsumo1 26263 |
Copyright terms: Public domain | W3C validator |