Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > o1add | Structured version Visualization version GIF version |
Description: The sum of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Fan Zheng, 14-Jul-2016.) |
Ref | Expression |
---|---|
o1add | ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹 ∘f + 𝐺) ∈ 𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | readdcl 10885 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) | |
2 | addcl 10884 | . 2 ⊢ ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑚 + 𝑛) ∈ ℂ) | |
3 | simp2l 1197 | . . . . . 6 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → 𝑚 ∈ ℂ) | |
4 | simp2r 1198 | . . . . . 6 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → 𝑛 ∈ ℂ) | |
5 | 3, 4 | addcld 10925 | . . . . 5 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (𝑚 + 𝑛) ∈ ℂ) |
6 | 5 | abscld 15076 | . . . 4 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘(𝑚 + 𝑛)) ∈ ℝ) |
7 | 3 | abscld 15076 | . . . . 5 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘𝑚) ∈ ℝ) |
8 | 4 | abscld 15076 | . . . . 5 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘𝑛) ∈ ℝ) |
9 | 7, 8 | readdcld 10935 | . . . 4 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → ((abs‘𝑚) + (abs‘𝑛)) ∈ ℝ) |
10 | simp1l 1195 | . . . . 5 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → 𝑥 ∈ ℝ) | |
11 | simp1r 1196 | . . . . 5 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → 𝑦 ∈ ℝ) | |
12 | 10, 11 | readdcld 10935 | . . . 4 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (𝑥 + 𝑦) ∈ ℝ) |
13 | 3, 4 | abstrid 15096 | . . . 4 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘(𝑚 + 𝑛)) ≤ ((abs‘𝑚) + (abs‘𝑛))) |
14 | simp3l 1199 | . . . . 5 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘𝑚) ≤ 𝑥) | |
15 | simp3r 1200 | . . . . 5 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘𝑛) ≤ 𝑦) | |
16 | 7, 8, 10, 11, 14, 15 | le2addd 11524 | . . . 4 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → ((abs‘𝑚) + (abs‘𝑛)) ≤ (𝑥 + 𝑦)) |
17 | 6, 9, 12, 13, 16 | letrd 11062 | . . 3 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘(𝑚 + 𝑛)) ≤ (𝑥 + 𝑦)) |
18 | 17 | 3expia 1119 | . 2 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ)) → (((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦) → (abs‘(𝑚 + 𝑛)) ≤ (𝑥 + 𝑦))) |
19 | 1, 2, 18 | o1of2 15250 | 1 ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹 ∘f + 𝐺) ∈ 𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 ℂcc 10800 ℝcr 10801 + caddc 10805 ≤ cle 10941 abscabs 14873 𝑂(1)co1 15123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ico 13014 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-o1 15127 |
This theorem is referenced by: o1add2 15261 o1dif 15267 fsumo1 15452 mudivsum 26583 selberglem2 26599 pntrsumo1 26618 |
Copyright terms: Public domain | W3C validator |