MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1sub Structured version   Visualization version   GIF version

Theorem o1sub 14687
Description: The difference of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Fan Zheng, 14-Jul-2016.)
Assertion
Ref Expression
o1sub ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹𝑓𝐺) ∈ 𝑂(1))

Proof of Theorem o1sub
Dummy variables 𝑥 𝑦 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 readdcl 10307 . 2 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
2 subcl 10571 . 2 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑚𝑛) ∈ ℂ)
3 simp2l 1257 . . . . . 6 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → 𝑚 ∈ ℂ)
4 simp2r 1258 . . . . . 6 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → 𝑛 ∈ ℂ)
53, 4subcld 10684 . . . . 5 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (𝑚𝑛) ∈ ℂ)
65abscld 14516 . . . 4 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘(𝑚𝑛)) ∈ ℝ)
73abscld 14516 . . . . 5 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘𝑚) ∈ ℝ)
84abscld 14516 . . . . 5 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘𝑛) ∈ ℝ)
97, 8readdcld 10358 . . . 4 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → ((abs‘𝑚) + (abs‘𝑛)) ∈ ℝ)
10 simp1l 1255 . . . . 5 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → 𝑥 ∈ ℝ)
11 simp1r 1256 . . . . 5 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → 𝑦 ∈ ℝ)
1210, 11readdcld 10358 . . . 4 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (𝑥 + 𝑦) ∈ ℝ)
133, 4abs2dif2d 14538 . . . 4 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘(𝑚𝑛)) ≤ ((abs‘𝑚) + (abs‘𝑛)))
14 simp3l 1259 . . . . 5 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘𝑚) ≤ 𝑥)
15 simp3r 1260 . . . . 5 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘𝑛) ≤ 𝑦)
167, 8, 10, 11, 14, 15le2addd 10938 . . . 4 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → ((abs‘𝑚) + (abs‘𝑛)) ≤ (𝑥 + 𝑦))
176, 9, 12, 13, 16letrd 10484 . . 3 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘(𝑚𝑛)) ≤ (𝑥 + 𝑦))
18173expia 1151 . 2 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ)) → (((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦) → (abs‘(𝑚𝑛)) ≤ (𝑥 + 𝑦)))
191, 2, 18o1of2 14684 1 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹𝑓𝐺) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108  wcel 2157   class class class wbr 4843  cfv 6101  (class class class)co 6878  𝑓 cof 7129  cc 10222  cr 10223   + caddc 10227  cle 10364  cmin 10556  abscabs 14315  𝑂(1)co1 14558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-om 7300  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-pm 8098  df-en 8196  df-dom 8197  df-sdom 8198  df-sup 8590  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-n0 11581  df-z 11667  df-uz 11931  df-rp 12075  df-ico 12430  df-seq 13056  df-exp 13115  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-o1 14562
This theorem is referenced by:  o1sub2  14697  o1dif  14701  vmadivsum  25523  rpvmasumlem  25528  selberglem1  25586  selberg2  25592  pntrsumo1  25606  selbergr  25609
  Copyright terms: Public domain W3C validator