![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > o1sub | Structured version Visualization version GIF version |
Description: The difference of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Fan Zheng, 14-Jul-2016.) |
Ref | Expression |
---|---|
o1sub | ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹 ∘f − 𝐺) ∈ 𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | readdcl 11139 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) | |
2 | subcl 11405 | . 2 ⊢ ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑚 − 𝑛) ∈ ℂ) | |
3 | simp2l 1200 | . . . . . 6 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → 𝑚 ∈ ℂ) | |
4 | simp2r 1201 | . . . . . 6 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → 𝑛 ∈ ℂ) | |
5 | 3, 4 | subcld 11517 | . . . . 5 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (𝑚 − 𝑛) ∈ ℂ) |
6 | 5 | abscld 15327 | . . . 4 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘(𝑚 − 𝑛)) ∈ ℝ) |
7 | 3 | abscld 15327 | . . . . 5 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘𝑚) ∈ ℝ) |
8 | 4 | abscld 15327 | . . . . 5 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘𝑛) ∈ ℝ) |
9 | 7, 8 | readdcld 11189 | . . . 4 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → ((abs‘𝑚) + (abs‘𝑛)) ∈ ℝ) |
10 | simp1l 1198 | . . . . 5 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → 𝑥 ∈ ℝ) | |
11 | simp1r 1199 | . . . . 5 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → 𝑦 ∈ ℝ) | |
12 | 10, 11 | readdcld 11189 | . . . 4 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (𝑥 + 𝑦) ∈ ℝ) |
13 | 3, 4 | abs2dif2d 15349 | . . . 4 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘(𝑚 − 𝑛)) ≤ ((abs‘𝑚) + (abs‘𝑛))) |
14 | simp3l 1202 | . . . . 5 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘𝑚) ≤ 𝑥) | |
15 | simp3r 1203 | . . . . 5 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘𝑛) ≤ 𝑦) | |
16 | 7, 8, 10, 11, 14, 15 | le2addd 11779 | . . . 4 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → ((abs‘𝑚) + (abs‘𝑛)) ≤ (𝑥 + 𝑦)) |
17 | 6, 9, 12, 13, 16 | letrd 11317 | . . 3 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ) ∧ ((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦)) → (abs‘(𝑚 − 𝑛)) ≤ (𝑥 + 𝑦)) |
18 | 17 | 3expia 1122 | . 2 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ)) → (((abs‘𝑚) ≤ 𝑥 ∧ (abs‘𝑛) ≤ 𝑦) → (abs‘(𝑚 − 𝑛)) ≤ (𝑥 + 𝑦))) |
19 | 1, 2, 18 | o1of2 15501 | 1 ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹 ∘f − 𝐺) ∈ 𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 ∈ wcel 2107 class class class wbr 5106 ‘cfv 6497 (class class class)co 7358 ∘f cof 7616 ℂcc 11054 ℝcr 11055 + caddc 11059 ≤ cle 11195 − cmin 11390 abscabs 15125 𝑂(1)co1 15374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 ax-pre-sup 11134 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-of 7618 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8651 df-pm 8771 df-en 8887 df-dom 8888 df-sdom 8889 df-sup 9383 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-div 11818 df-nn 12159 df-2 12221 df-3 12222 df-n0 12419 df-z 12505 df-uz 12769 df-rp 12921 df-ico 13276 df-seq 13913 df-exp 13974 df-cj 14990 df-re 14991 df-im 14992 df-sqrt 15126 df-abs 15127 df-o1 15378 |
This theorem is referenced by: o1sub2 15514 o1dif 15518 vmadivsum 26846 rpvmasumlem 26851 selberglem1 26909 selberg2 26915 pntrsumo1 26929 selbergr 26932 |
Copyright terms: Public domain | W3C validator |