MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1mul Structured version   Visualization version   GIF version

Theorem o1mul 15540
Description: The product of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Fan Zheng, 14-Jul-2016.)
Assertion
Ref Expression
o1mul ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹f · 𝐺) ∈ 𝑂(1))

Proof of Theorem o1mul
Dummy variables 𝑥 𝑦 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remulcl 11113 . 2 ((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝑚 · 𝑛) ∈ ℝ)
2 mulcl 11112 . 2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
3 simp2l 1200 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 𝑥 ∈ ℂ)
4 simp2r 1201 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 𝑦 ∈ ℂ)
53, 4absmuld 15382 . . . 4 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦)))
63abscld 15364 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘𝑥) ∈ ℝ)
7 simp1l 1198 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 𝑚 ∈ ℝ)
84abscld 15364 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘𝑦) ∈ ℝ)
9 simp1r 1199 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 𝑛 ∈ ℝ)
103absge0d 15372 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 0 ≤ (abs‘𝑥))
114absge0d 15372 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 0 ≤ (abs‘𝑦))
12 simp3l 1202 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘𝑥) ≤ 𝑚)
13 simp3r 1203 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘𝑦) ≤ 𝑛)
146, 7, 8, 9, 10, 11, 12, 13lemul12ad 12085 . . . 4 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → ((abs‘𝑥) · (abs‘𝑦)) ≤ (𝑚 · 𝑛))
155, 14eqbrtrd 5117 . . 3 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘(𝑥 · 𝑦)) ≤ (𝑚 · 𝑛))
16153expia 1121 . 2 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥 · 𝑦)) ≤ (𝑚 · 𝑛)))
171, 2, 16o1of2 15538 1 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹f · 𝐺) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  f cof 7615  cc 11026  cr 11027   · cmul 11033  cle 11169  abscabs 15159  𝑂(1)co1 15411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-ico 13272  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-o1 15415
This theorem is referenced by:  o1mul2  15550  chebbnd2  27404  chto1lb  27405  chpo1ub  27407  selberg2lem  27477
  Copyright terms: Public domain W3C validator