MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1mul Structured version   Visualization version   GIF version

Theorem o1mul 14810
Description: The product of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Fan Zheng, 14-Jul-2016.)
Assertion
Ref Expression
o1mul ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹𝑓 · 𝐺) ∈ 𝑂(1))

Proof of Theorem o1mul
Dummy variables 𝑥 𝑦 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remulcl 10473 . 2 ((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝑚 · 𝑛) ∈ ℝ)
2 mulcl 10472 . 2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
3 simp2l 1192 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 𝑥 ∈ ℂ)
4 simp2r 1193 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 𝑦 ∈ ℂ)
53, 4absmuld 14653 . . . 4 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦)))
63abscld 14635 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘𝑥) ∈ ℝ)
7 simp1l 1190 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 𝑚 ∈ ℝ)
84abscld 14635 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘𝑦) ∈ ℝ)
9 simp1r 1191 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 𝑛 ∈ ℝ)
103absge0d 14643 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 0 ≤ (abs‘𝑥))
114absge0d 14643 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 0 ≤ (abs‘𝑦))
12 simp3l 1194 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘𝑥) ≤ 𝑚)
13 simp3r 1195 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘𝑦) ≤ 𝑛)
146, 7, 8, 9, 10, 11, 12, 13lemul12ad 11435 . . . 4 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → ((abs‘𝑥) · (abs‘𝑦)) ≤ (𝑚 · 𝑛))
155, 14eqbrtrd 4988 . . 3 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘(𝑥 · 𝑦)) ≤ (𝑚 · 𝑛))
16153expia 1114 . 2 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥 · 𝑦)) ≤ (𝑚 · 𝑛)))
171, 2, 16o1of2 14808 1 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹𝑓 · 𝐺) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080  wcel 2081   class class class wbr 4966  cfv 6230  (class class class)co 7021  𝑓 cof 7270  cc 10386  cr 10387   · cmul 10393  cle 10527  abscabs 14432  𝑂(1)co1 14682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465  ax-pre-sup 10466
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-of 7272  df-om 7442  df-2nd 7551  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-er 8144  df-pm 8264  df-en 8363  df-dom 8364  df-sdom 8365  df-sup 8757  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-div 11151  df-nn 11492  df-2 11553  df-3 11554  df-n0 11751  df-z 11835  df-uz 12099  df-rp 12245  df-ico 12599  df-seq 13225  df-exp 13285  df-cj 14297  df-re 14298  df-im 14299  df-sqrt 14433  df-abs 14434  df-o1 14686
This theorem is referenced by:  o1mul2  14820  chebbnd2  25740  chto1lb  25741  chpo1ub  25743  selberg2lem  25813
  Copyright terms: Public domain W3C validator