MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1mul Structured version   Visualization version   GIF version

Theorem o1mul 15176
Description: The product of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Fan Zheng, 14-Jul-2016.)
Assertion
Ref Expression
o1mul ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹f · 𝐺) ∈ 𝑂(1))

Proof of Theorem o1mul
Dummy variables 𝑥 𝑦 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remulcl 10814 . 2 ((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝑚 · 𝑛) ∈ ℝ)
2 mulcl 10813 . 2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
3 simp2l 1201 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 𝑥 ∈ ℂ)
4 simp2r 1202 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 𝑦 ∈ ℂ)
53, 4absmuld 15018 . . . 4 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦)))
63abscld 15000 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘𝑥) ∈ ℝ)
7 simp1l 1199 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 𝑚 ∈ ℝ)
84abscld 15000 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘𝑦) ∈ ℝ)
9 simp1r 1200 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 𝑛 ∈ ℝ)
103absge0d 15008 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 0 ≤ (abs‘𝑥))
114absge0d 15008 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 0 ≤ (abs‘𝑦))
12 simp3l 1203 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘𝑥) ≤ 𝑚)
13 simp3r 1204 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘𝑦) ≤ 𝑛)
146, 7, 8, 9, 10, 11, 12, 13lemul12ad 11774 . . . 4 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → ((abs‘𝑥) · (abs‘𝑦)) ≤ (𝑚 · 𝑛))
155, 14eqbrtrd 5075 . . 3 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘(𝑥 · 𝑦)) ≤ (𝑚 · 𝑛))
16153expia 1123 . 2 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥 · 𝑦)) ≤ (𝑚 · 𝑛)))
171, 2, 16o1of2 15174 1 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹f · 𝐺) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089  wcel 2110   class class class wbr 5053  cfv 6380  (class class class)co 7213  f cof 7467  cc 10727  cr 10728   · cmul 10734  cle 10868  abscabs 14797  𝑂(1)co1 15047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-ico 12941  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-o1 15051
This theorem is referenced by:  o1mul2  15186  chebbnd2  26358  chto1lb  26359  chpo1ub  26361  selberg2lem  26431
  Copyright terms: Public domain W3C validator