MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1mul Structured version   Visualization version   GIF version

Theorem o1mul 15633
Description: The product of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Fan Zheng, 14-Jul-2016.)
Assertion
Ref Expression
o1mul ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹f · 𝐺) ∈ 𝑂(1))

Proof of Theorem o1mul
Dummy variables 𝑥 𝑦 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remulcl 11222 . 2 ((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝑚 · 𝑛) ∈ ℝ)
2 mulcl 11221 . 2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
3 simp2l 1199 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 𝑥 ∈ ℂ)
4 simp2r 1200 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 𝑦 ∈ ℂ)
53, 4absmuld 15475 . . . 4 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦)))
63abscld 15457 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘𝑥) ∈ ℝ)
7 simp1l 1197 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 𝑚 ∈ ℝ)
84abscld 15457 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘𝑦) ∈ ℝ)
9 simp1r 1198 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 𝑛 ∈ ℝ)
103absge0d 15465 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 0 ≤ (abs‘𝑥))
114absge0d 15465 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 0 ≤ (abs‘𝑦))
12 simp3l 1201 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘𝑥) ≤ 𝑚)
13 simp3r 1202 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘𝑦) ≤ 𝑛)
146, 7, 8, 9, 10, 11, 12, 13lemul12ad 12192 . . . 4 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → ((abs‘𝑥) · (abs‘𝑦)) ≤ (𝑚 · 𝑛))
155, 14eqbrtrd 5145 . . 3 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘(𝑥 · 𝑦)) ≤ (𝑚 · 𝑛))
16153expia 1121 . 2 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥 · 𝑦)) ≤ (𝑚 · 𝑛)))
171, 2, 16o1of2 15631 1 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹f · 𝐺) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2107   class class class wbr 5123  cfv 6541  (class class class)co 7413  f cof 7677  cc 11135  cr 11136   · cmul 11142  cle 11278  abscabs 15255  𝑂(1)co1 15504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-sup 9464  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-z 12597  df-uz 12861  df-rp 13017  df-ico 13375  df-seq 14025  df-exp 14085  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-o1 15508
This theorem is referenced by:  o1mul2  15643  chebbnd2  27457  chto1lb  27458  chpo1ub  27460  selberg2lem  27530
  Copyright terms: Public domain W3C validator