Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1mul Structured version   Visualization version   GIF version

Theorem o1mul 14965
 Description: The product of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Fan Zheng, 14-Jul-2016.)
Assertion
Ref Expression
o1mul ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹f · 𝐺) ∈ 𝑂(1))

Proof of Theorem o1mul
Dummy variables 𝑥 𝑦 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remulcl 10613 . 2 ((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝑚 · 𝑛) ∈ ℝ)
2 mulcl 10612 . 2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
3 simp2l 1196 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 𝑥 ∈ ℂ)
4 simp2r 1197 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 𝑦 ∈ ℂ)
53, 4absmuld 14808 . . . 4 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦)))
63abscld 14790 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘𝑥) ∈ ℝ)
7 simp1l 1194 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 𝑚 ∈ ℝ)
84abscld 14790 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘𝑦) ∈ ℝ)
9 simp1r 1195 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 𝑛 ∈ ℝ)
103absge0d 14798 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 0 ≤ (abs‘𝑥))
114absge0d 14798 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → 0 ≤ (abs‘𝑦))
12 simp3l 1198 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘𝑥) ≤ 𝑚)
13 simp3r 1199 . . . . 5 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘𝑦) ≤ 𝑛)
146, 7, 8, 9, 10, 11, 12, 13lemul12ad 11573 . . . 4 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → ((abs‘𝑥) · (abs‘𝑦)) ≤ (𝑚 · 𝑛))
155, 14eqbrtrd 5052 . . 3 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)) → (abs‘(𝑥 · 𝑦)) ≤ (𝑚 · 𝑛))
16153expia 1118 . 2 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥 · 𝑦)) ≤ (𝑚 · 𝑛)))
171, 2, 16o1of2 14963 1 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹f · 𝐺) ∈ 𝑂(1))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   ∈ wcel 2111   class class class wbr 5030  ‘cfv 6324  (class class class)co 7135   ∘f cof 7388  ℂcc 10526  ℝcr 10527   · cmul 10533   ≤ cle 10667  abscabs 14587  𝑂(1)co1 14837 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-pre-sup 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7390  df-om 7563  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-er 8274  df-pm 8394  df-en 8495  df-dom 8496  df-sdom 8497  df-sup 8892  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-nn 11628  df-2 11690  df-3 11691  df-n0 11888  df-z 11972  df-uz 12234  df-rp 12380  df-ico 12734  df-seq 13367  df-exp 13428  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-o1 14841 This theorem is referenced by:  o1mul2  14975  chebbnd2  26068  chto1lb  26069  chpo1ub  26071  selberg2lem  26141
 Copyright terms: Public domain W3C validator