MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facth Structured version   Visualization version   GIF version

Theorem facth 24274
Description: The factor theorem. If a polynomial 𝐹 has a root at 𝐴, then 𝐺 = 𝑥𝐴 is a factor of 𝐹 (and the other factor is 𝐹 quot 𝐺). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
facth.1 𝐺 = (Xp𝑓 − (ℂ × {𝐴}))
Assertion
Ref Expression
facth ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹 = (𝐺𝑓 · (𝐹 quot 𝐺)))

Proof of Theorem facth
StepHypRef Expression
1 facth.1 . . . . 5 𝐺 = (Xp𝑓 − (ℂ × {𝐴}))
2 eqid 2771 . . . . 5 (𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺))) = (𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺)))
31, 2plyrem 24273 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺))) = (ℂ × {(𝐹𝐴)}))
433adant3 1126 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺))) = (ℂ × {(𝐹𝐴)}))
5 simp3 1132 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐹𝐴) = 0)
65sneqd 4328 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → {(𝐹𝐴)} = {0})
76xpeq2d 5278 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (ℂ × {(𝐹𝐴)}) = (ℂ × {0}))
84, 7eqtrd 2805 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺))) = (ℂ × {0}))
9 cnex 10217 . . . 4 ℂ ∈ V
109a1i 11 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → ℂ ∈ V)
11 simp1 1130 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹 ∈ (Poly‘𝑆))
12 plyf 24167 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
1311, 12syl 17 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹:ℂ⟶ℂ)
141plyremlem 24272 . . . . . . 7 (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))
15143ad2ant2 1128 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))
1615simp1d 1136 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐺 ∈ (Poly‘ℂ))
17 plyssc 24169 . . . . . . 7 (Poly‘𝑆) ⊆ (Poly‘ℂ)
1817, 11sseldi 3750 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹 ∈ (Poly‘ℂ))
1915simp2d 1137 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (deg‘𝐺) = 1)
20 ax-1ne0 10205 . . . . . . . . 9 1 ≠ 0
2120a1i 11 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 1 ≠ 0)
2219, 21eqnetrd 3010 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (deg‘𝐺) ≠ 0)
23 fveq2 6330 . . . . . . . . 9 (𝐺 = 0𝑝 → (deg‘𝐺) = (deg‘0𝑝))
24 dgr0 24231 . . . . . . . . 9 (deg‘0𝑝) = 0
2523, 24syl6eq 2821 . . . . . . . 8 (𝐺 = 0𝑝 → (deg‘𝐺) = 0)
2625necon3i 2975 . . . . . . 7 ((deg‘𝐺) ≠ 0 → 𝐺 ≠ 0𝑝)
2722, 26syl 17 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐺 ≠ 0𝑝)
28 quotcl2 24270 . . . . . 6 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ))
2918, 16, 27, 28syl3anc 1476 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ))
30 plymulcl 24190 . . . . 5 ((𝐺 ∈ (Poly‘ℂ) ∧ (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) → (𝐺𝑓 · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ))
3116, 29, 30syl2anc 573 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐺𝑓 · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ))
32 plyf 24167 . . . 4 ((𝐺𝑓 · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ) → (𝐺𝑓 · (𝐹 quot 𝐺)):ℂ⟶ℂ)
3331, 32syl 17 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐺𝑓 · (𝐹 quot 𝐺)):ℂ⟶ℂ)
34 ofsubeq0 11217 . . 3 ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ (𝐺𝑓 · (𝐹 quot 𝐺)):ℂ⟶ℂ) → ((𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺))) = (ℂ × {0}) ↔ 𝐹 = (𝐺𝑓 · (𝐹 quot 𝐺))))
3510, 13, 33, 34syl3anc 1476 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → ((𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺))) = (ℂ × {0}) ↔ 𝐹 = (𝐺𝑓 · (𝐹 quot 𝐺))))
368, 35mpbid 222 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹 = (𝐺𝑓 · (𝐹 quot 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1071   = wceq 1631  wcel 2145  wne 2943  Vcvv 3351  {csn 4316   × cxp 5247  ccnv 5248  cima 5252  wf 6025  cfv 6029  (class class class)co 6791  𝑓 cof 7040  cc 10134  0cc0 10136  1c1 10137   · cmul 10141  cmin 10466  0𝑝c0p 23649  Polycply 24153  Xpcidp 24154  degcdgr 24156   quot cquot 24258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214  ax-addf 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-of 7042  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-oadd 7715  df-er 7894  df-map 8009  df-pm 8010  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-sup 8502  df-inf 8503  df-oi 8569  df-card 8963  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-n0 11493  df-z 11578  df-uz 11887  df-rp 12029  df-fz 12527  df-fzo 12667  df-fl 12794  df-seq 13002  df-exp 13061  df-hash 13315  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-clim 14420  df-rlim 14421  df-sum 14618  df-0p 23650  df-ply 24157  df-idp 24158  df-coe 24159  df-dgr 24160  df-quot 24259
This theorem is referenced by:  fta1lem  24275  vieta1lem1  24278  vieta1lem2  24279
  Copyright terms: Public domain W3C validator