Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  facth Structured version   Visualization version   GIF version

Theorem facth 24498
 Description: The factor theorem. If a polynomial 𝐹 has a root at 𝐴, then 𝐺 = 𝑥 − 𝐴 is a factor of 𝐹 (and the other factor is 𝐹 quot 𝐺). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
facth.1 𝐺 = (Xp𝑓 − (ℂ × {𝐴}))
Assertion
Ref Expression
facth ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹 = (𝐺𝑓 · (𝐹 quot 𝐺)))

Proof of Theorem facth
StepHypRef Expression
1 facth.1 . . . . 5 𝐺 = (Xp𝑓 − (ℂ × {𝐴}))
2 eqid 2778 . . . . 5 (𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺))) = (𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺)))
31, 2plyrem 24497 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺))) = (ℂ × {(𝐹𝐴)}))
433adant3 1123 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺))) = (ℂ × {(𝐹𝐴)}))
5 simp3 1129 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐹𝐴) = 0)
65sneqd 4410 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → {(𝐹𝐴)} = {0})
76xpeq2d 5385 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (ℂ × {(𝐹𝐴)}) = (ℂ × {0}))
84, 7eqtrd 2814 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺))) = (ℂ × {0}))
9 cnex 10353 . . . 4 ℂ ∈ V
109a1i 11 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → ℂ ∈ V)
11 simp1 1127 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹 ∈ (Poly‘𝑆))
12 plyf 24391 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
1311, 12syl 17 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹:ℂ⟶ℂ)
141plyremlem 24496 . . . . . . 7 (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))
15143ad2ant2 1125 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))
1615simp1d 1133 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐺 ∈ (Poly‘ℂ))
17 plyssc 24393 . . . . . . 7 (Poly‘𝑆) ⊆ (Poly‘ℂ)
1817, 11sseldi 3819 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹 ∈ (Poly‘ℂ))
1915simp2d 1134 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (deg‘𝐺) = 1)
20 ax-1ne0 10341 . . . . . . . . 9 1 ≠ 0
2120a1i 11 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 1 ≠ 0)
2219, 21eqnetrd 3036 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (deg‘𝐺) ≠ 0)
23 fveq2 6446 . . . . . . . . 9 (𝐺 = 0𝑝 → (deg‘𝐺) = (deg‘0𝑝))
24 dgr0 24455 . . . . . . . . 9 (deg‘0𝑝) = 0
2523, 24syl6eq 2830 . . . . . . . 8 (𝐺 = 0𝑝 → (deg‘𝐺) = 0)
2625necon3i 3001 . . . . . . 7 ((deg‘𝐺) ≠ 0 → 𝐺 ≠ 0𝑝)
2722, 26syl 17 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐺 ≠ 0𝑝)
28 quotcl2 24494 . . . . . 6 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ))
2918, 16, 27, 28syl3anc 1439 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ))
30 plymulcl 24414 . . . . 5 ((𝐺 ∈ (Poly‘ℂ) ∧ (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) → (𝐺𝑓 · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ))
3116, 29, 30syl2anc 579 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐺𝑓 · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ))
32 plyf 24391 . . . 4 ((𝐺𝑓 · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ) → (𝐺𝑓 · (𝐹 quot 𝐺)):ℂ⟶ℂ)
3331, 32syl 17 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐺𝑓 · (𝐹 quot 𝐺)):ℂ⟶ℂ)
34 ofsubeq0 11371 . . 3 ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ (𝐺𝑓 · (𝐹 quot 𝐺)):ℂ⟶ℂ) → ((𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺))) = (ℂ × {0}) ↔ 𝐹 = (𝐺𝑓 · (𝐹 quot 𝐺))))
3510, 13, 33, 34syl3anc 1439 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → ((𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺))) = (ℂ × {0}) ↔ 𝐹 = (𝐺𝑓 · (𝐹 quot 𝐺))))
368, 35mpbid 224 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹 = (𝐺𝑓 · (𝐹 quot 𝐺)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ w3a 1071   = wceq 1601   ∈ wcel 2107   ≠ wne 2969  Vcvv 3398  {csn 4398   × cxp 5353  ◡ccnv 5354   “ cima 5358  ⟶wf 6131  ‘cfv 6135  (class class class)co 6922   ∘𝑓 cof 7172  ℂcc 10270  0cc0 10272  1c1 10273   · cmul 10277   − cmin 10606  0𝑝c0p 23873  Polycply 24377  Xpcidp 24378  degcdgr 24380   quot cquot 24482 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-fz 12644  df-fzo 12785  df-fl 12912  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-rlim 14628  df-sum 14825  df-0p 23874  df-ply 24381  df-idp 24382  df-coe 24383  df-dgr 24384  df-quot 24483 This theorem is referenced by:  fta1lem  24499  vieta1lem1  24502  vieta1lem2  24503
 Copyright terms: Public domain W3C validator