MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facth Structured version   Visualization version   GIF version

Theorem facth 26221
Description: The factor theorem. If a polynomial 𝐹 has a root at 𝐴, then 𝐺 = 𝑥𝐴 is a factor of 𝐹 (and the other factor is 𝐹 quot 𝐺). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
facth.1 𝐺 = (Xpf − (ℂ × {𝐴}))
Assertion
Ref Expression
facth ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹 = (𝐺f · (𝐹 quot 𝐺)))

Proof of Theorem facth
StepHypRef Expression
1 facth.1 . . . . 5 𝐺 = (Xpf − (ℂ × {𝐴}))
2 eqid 2730 . . . . 5 (𝐹f − (𝐺f · (𝐹 quot 𝐺))) = (𝐹f − (𝐺f · (𝐹 quot 𝐺)))
31, 2plyrem 26220 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹f − (𝐺f · (𝐹 quot 𝐺))) = (ℂ × {(𝐹𝐴)}))
433adant3 1132 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐹f − (𝐺f · (𝐹 quot 𝐺))) = (ℂ × {(𝐹𝐴)}))
5 simp3 1138 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐹𝐴) = 0)
65sneqd 4609 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → {(𝐹𝐴)} = {0})
76xpeq2d 5676 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (ℂ × {(𝐹𝐴)}) = (ℂ × {0}))
84, 7eqtrd 2765 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐹f − (𝐺f · (𝐹 quot 𝐺))) = (ℂ × {0}))
9 cnex 11167 . . . 4 ℂ ∈ V
109a1i 11 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → ℂ ∈ V)
11 simp1 1136 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹 ∈ (Poly‘𝑆))
12 plyf 26110 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
1311, 12syl 17 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹:ℂ⟶ℂ)
141plyremlem 26219 . . . . . . 7 (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))
15143ad2ant2 1134 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))
1615simp1d 1142 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐺 ∈ (Poly‘ℂ))
17 plyssc 26112 . . . . . . 7 (Poly‘𝑆) ⊆ (Poly‘ℂ)
1817, 11sselid 3952 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹 ∈ (Poly‘ℂ))
1915simp2d 1143 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (deg‘𝐺) = 1)
20 ax-1ne0 11155 . . . . . . . . 9 1 ≠ 0
2120a1i 11 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 1 ≠ 0)
2219, 21eqnetrd 2994 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (deg‘𝐺) ≠ 0)
23 fveq2 6865 . . . . . . . . 9 (𝐺 = 0𝑝 → (deg‘𝐺) = (deg‘0𝑝))
24 dgr0 26175 . . . . . . . . 9 (deg‘0𝑝) = 0
2523, 24eqtrdi 2781 . . . . . . . 8 (𝐺 = 0𝑝 → (deg‘𝐺) = 0)
2625necon3i 2959 . . . . . . 7 ((deg‘𝐺) ≠ 0 → 𝐺 ≠ 0𝑝)
2722, 26syl 17 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐺 ≠ 0𝑝)
28 quotcl2 26217 . . . . . 6 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ))
2918, 16, 27, 28syl3anc 1373 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ))
30 plymulcl 26133 . . . . 5 ((𝐺 ∈ (Poly‘ℂ) ∧ (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) → (𝐺f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ))
3116, 29, 30syl2anc 584 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐺f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ))
32 plyf 26110 . . . 4 ((𝐺f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ) → (𝐺f · (𝐹 quot 𝐺)):ℂ⟶ℂ)
3331, 32syl 17 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐺f · (𝐹 quot 𝐺)):ℂ⟶ℂ)
34 ofsubeq0 12194 . . 3 ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ (𝐺f · (𝐹 quot 𝐺)):ℂ⟶ℂ) → ((𝐹f − (𝐺f · (𝐹 quot 𝐺))) = (ℂ × {0}) ↔ 𝐹 = (𝐺f · (𝐹 quot 𝐺))))
3510, 13, 33, 34syl3anc 1373 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → ((𝐹f − (𝐺f · (𝐹 quot 𝐺))) = (ℂ × {0}) ↔ 𝐹 = (𝐺f · (𝐹 quot 𝐺))))
368, 35mpbid 232 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹 = (𝐺f · (𝐹 quot 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2927  Vcvv 3455  {csn 4597   × cxp 5644  ccnv 5645  cima 5649  wf 6515  cfv 6519  (class class class)co 7394  f cof 7658  cc 11084  0cc0 11086  1c1 11087   · cmul 11091  cmin 11423  0𝑝c0p 25577  Polycply 26096  Xpcidp 26097  degcdgr 26099   quot cquot 26205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-inf2 9612  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163  ax-pre-sup 11164
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-se 5600  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-isom 6528  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7660  df-om 7851  df-1st 7977  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-er 8682  df-map 8805  df-pm 8806  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-sup 9411  df-inf 9412  df-oi 9481  df-card 9910  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-div 11852  df-nn 12198  df-2 12260  df-3 12261  df-n0 12459  df-z 12546  df-uz 12810  df-rp 12966  df-fz 13482  df-fzo 13629  df-fl 13766  df-seq 13977  df-exp 14037  df-hash 14306  df-cj 15075  df-re 15076  df-im 15077  df-sqrt 15211  df-abs 15212  df-clim 15461  df-rlim 15462  df-sum 15660  df-0p 25578  df-ply 26100  df-idp 26101  df-coe 26102  df-dgr 26103  df-quot 26206
This theorem is referenced by:  fta1lem  26222  vieta1lem1  26225  vieta1lem2  26226
  Copyright terms: Public domain W3C validator