![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > facth | Structured version Visualization version GIF version |
Description: The factor theorem. If a polynomial 𝐹 has a root at 𝐴, then 𝐺 = 𝑥 − 𝐴 is a factor of 𝐹 (and the other factor is 𝐹 quot 𝐺). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014.) |
Ref | Expression |
---|---|
facth.1 | ⊢ 𝐺 = (Xp ∘f − (ℂ × {𝐴})) |
Ref | Expression |
---|---|
facth | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹 = (𝐺 ∘f · (𝐹 quot 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | facth.1 | . . . . 5 ⊢ 𝐺 = (Xp ∘f − (ℂ × {𝐴})) | |
2 | eqid 2735 | . . . . 5 ⊢ (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) | |
3 | 1, 2 | plyrem 26362 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (ℂ × {(𝐹‘𝐴)})) |
4 | 3 | 3adant3 1131 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (ℂ × {(𝐹‘𝐴)})) |
5 | simp3 1137 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐹‘𝐴) = 0) | |
6 | 5 | sneqd 4643 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → {(𝐹‘𝐴)} = {0}) |
7 | 6 | xpeq2d 5719 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (ℂ × {(𝐹‘𝐴)}) = (ℂ × {0})) |
8 | 4, 7 | eqtrd 2775 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (ℂ × {0})) |
9 | cnex 11234 | . . . 4 ⊢ ℂ ∈ V | |
10 | 9 | a1i 11 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → ℂ ∈ V) |
11 | simp1 1135 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹 ∈ (Poly‘𝑆)) | |
12 | plyf 26252 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹:ℂ⟶ℂ) |
14 | 1 | plyremlem 26361 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (◡𝐺 “ {0}) = {𝐴})) |
15 | 14 | 3ad2ant2 1133 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (◡𝐺 “ {0}) = {𝐴})) |
16 | 15 | simp1d 1141 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐺 ∈ (Poly‘ℂ)) |
17 | plyssc 26254 | . . . . . . 7 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | |
18 | 17, 11 | sselid 3993 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹 ∈ (Poly‘ℂ)) |
19 | 15 | simp2d 1142 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (deg‘𝐺) = 1) |
20 | ax-1ne0 11222 | . . . . . . . . 9 ⊢ 1 ≠ 0 | |
21 | 20 | a1i 11 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 1 ≠ 0) |
22 | 19, 21 | eqnetrd 3006 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (deg‘𝐺) ≠ 0) |
23 | fveq2 6907 | . . . . . . . . 9 ⊢ (𝐺 = 0𝑝 → (deg‘𝐺) = (deg‘0𝑝)) | |
24 | dgr0 26317 | . . . . . . . . 9 ⊢ (deg‘0𝑝) = 0 | |
25 | 23, 24 | eqtrdi 2791 | . . . . . . . 8 ⊢ (𝐺 = 0𝑝 → (deg‘𝐺) = 0) |
26 | 25 | necon3i 2971 | . . . . . . 7 ⊢ ((deg‘𝐺) ≠ 0 → 𝐺 ≠ 0𝑝) |
27 | 22, 26 | syl 17 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐺 ≠ 0𝑝) |
28 | quotcl2 26359 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) | |
29 | 18, 16, 27, 28 | syl3anc 1370 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) |
30 | plymulcl 26275 | . . . . 5 ⊢ ((𝐺 ∈ (Poly‘ℂ) ∧ (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) → (𝐺 ∘f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ)) | |
31 | 16, 29, 30 | syl2anc 584 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐺 ∘f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ)) |
32 | plyf 26252 | . . . 4 ⊢ ((𝐺 ∘f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ) → (𝐺 ∘f · (𝐹 quot 𝐺)):ℂ⟶ℂ) | |
33 | 31, 32 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐺 ∘f · (𝐹 quot 𝐺)):ℂ⟶ℂ) |
34 | ofsubeq0 12261 | . . 3 ⊢ ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ (𝐺 ∘f · (𝐹 quot 𝐺)):ℂ⟶ℂ) → ((𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (ℂ × {0}) ↔ 𝐹 = (𝐺 ∘f · (𝐹 quot 𝐺)))) | |
35 | 10, 13, 33, 34 | syl3anc 1370 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → ((𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (ℂ × {0}) ↔ 𝐹 = (𝐺 ∘f · (𝐹 quot 𝐺)))) |
36 | 8, 35 | mpbid 232 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹 = (𝐺 ∘f · (𝐹 quot 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 Vcvv 3478 {csn 4631 × cxp 5687 ◡ccnv 5688 “ cima 5692 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ∘f cof 7695 ℂcc 11151 0cc0 11153 1c1 11154 · cmul 11158 − cmin 11490 0𝑝c0p 25718 Polycply 26238 Xpcidp 26239 degcdgr 26241 quot cquot 26347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-fl 13829 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-rlim 15522 df-sum 15720 df-0p 25719 df-ply 26242 df-idp 26243 df-coe 26244 df-dgr 26245 df-quot 26348 |
This theorem is referenced by: fta1lem 26364 vieta1lem1 26367 vieta1lem2 26368 |
Copyright terms: Public domain | W3C validator |