Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > facth | Structured version Visualization version GIF version |
Description: The factor theorem. If a polynomial 𝐹 has a root at 𝐴, then 𝐺 = 𝑥 − 𝐴 is a factor of 𝐹 (and the other factor is 𝐹 quot 𝐺). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014.) |
Ref | Expression |
---|---|
facth.1 | ⊢ 𝐺 = (Xp ∘f − (ℂ × {𝐴})) |
Ref | Expression |
---|---|
facth | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹 = (𝐺 ∘f · (𝐹 quot 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | facth.1 | . . . . 5 ⊢ 𝐺 = (Xp ∘f − (ℂ × {𝐴})) | |
2 | eqid 2738 | . . . . 5 ⊢ (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) | |
3 | 1, 2 | plyrem 25370 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (ℂ × {(𝐹‘𝐴)})) |
4 | 3 | 3adant3 1130 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (ℂ × {(𝐹‘𝐴)})) |
5 | simp3 1136 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐹‘𝐴) = 0) | |
6 | 5 | sneqd 4570 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → {(𝐹‘𝐴)} = {0}) |
7 | 6 | xpeq2d 5610 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (ℂ × {(𝐹‘𝐴)}) = (ℂ × {0})) |
8 | 4, 7 | eqtrd 2778 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (ℂ × {0})) |
9 | cnex 10883 | . . . 4 ⊢ ℂ ∈ V | |
10 | 9 | a1i 11 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → ℂ ∈ V) |
11 | simp1 1134 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹 ∈ (Poly‘𝑆)) | |
12 | plyf 25264 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹:ℂ⟶ℂ) |
14 | 1 | plyremlem 25369 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (◡𝐺 “ {0}) = {𝐴})) |
15 | 14 | 3ad2ant2 1132 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (◡𝐺 “ {0}) = {𝐴})) |
16 | 15 | simp1d 1140 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐺 ∈ (Poly‘ℂ)) |
17 | plyssc 25266 | . . . . . . 7 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | |
18 | 17, 11 | sselid 3915 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹 ∈ (Poly‘ℂ)) |
19 | 15 | simp2d 1141 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (deg‘𝐺) = 1) |
20 | ax-1ne0 10871 | . . . . . . . . 9 ⊢ 1 ≠ 0 | |
21 | 20 | a1i 11 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 1 ≠ 0) |
22 | 19, 21 | eqnetrd 3010 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (deg‘𝐺) ≠ 0) |
23 | fveq2 6756 | . . . . . . . . 9 ⊢ (𝐺 = 0𝑝 → (deg‘𝐺) = (deg‘0𝑝)) | |
24 | dgr0 25328 | . . . . . . . . 9 ⊢ (deg‘0𝑝) = 0 | |
25 | 23, 24 | eqtrdi 2795 | . . . . . . . 8 ⊢ (𝐺 = 0𝑝 → (deg‘𝐺) = 0) |
26 | 25 | necon3i 2975 | . . . . . . 7 ⊢ ((deg‘𝐺) ≠ 0 → 𝐺 ≠ 0𝑝) |
27 | 22, 26 | syl 17 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐺 ≠ 0𝑝) |
28 | quotcl2 25367 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) | |
29 | 18, 16, 27, 28 | syl3anc 1369 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) |
30 | plymulcl 25287 | . . . . 5 ⊢ ((𝐺 ∈ (Poly‘ℂ) ∧ (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) → (𝐺 ∘f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ)) | |
31 | 16, 29, 30 | syl2anc 583 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐺 ∘f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ)) |
32 | plyf 25264 | . . . 4 ⊢ ((𝐺 ∘f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ) → (𝐺 ∘f · (𝐹 quot 𝐺)):ℂ⟶ℂ) | |
33 | 31, 32 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐺 ∘f · (𝐹 quot 𝐺)):ℂ⟶ℂ) |
34 | ofsubeq0 11900 | . . 3 ⊢ ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ (𝐺 ∘f · (𝐹 quot 𝐺)):ℂ⟶ℂ) → ((𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (ℂ × {0}) ↔ 𝐹 = (𝐺 ∘f · (𝐹 quot 𝐺)))) | |
35 | 10, 13, 33, 34 | syl3anc 1369 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → ((𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (ℂ × {0}) ↔ 𝐹 = (𝐺 ∘f · (𝐹 quot 𝐺)))) |
36 | 8, 35 | mpbid 231 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹 = (𝐺 ∘f · (𝐹 quot 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 {csn 4558 × cxp 5578 ◡ccnv 5579 “ cima 5583 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 ℂcc 10800 0cc0 10802 1c1 10803 · cmul 10807 − cmin 11135 0𝑝c0p 24738 Polycply 25250 Xpcidp 25251 degcdgr 25253 quot cquot 25355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-0p 24739 df-ply 25254 df-idp 25255 df-coe 25256 df-dgr 25257 df-quot 25356 |
This theorem is referenced by: fta1lem 25372 vieta1lem1 25375 vieta1lem2 25376 |
Copyright terms: Public domain | W3C validator |