| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > facth | Structured version Visualization version GIF version | ||
| Description: The factor theorem. If a polynomial 𝐹 has a root at 𝐴, then 𝐺 = 𝑥 − 𝐴 is a factor of 𝐹 (and the other factor is 𝐹 quot 𝐺). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| Ref | Expression |
|---|---|
| facth.1 | ⊢ 𝐺 = (Xp ∘f − (ℂ × {𝐴})) |
| Ref | Expression |
|---|---|
| facth | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹 = (𝐺 ∘f · (𝐹 quot 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | facth.1 | . . . . 5 ⊢ 𝐺 = (Xp ∘f − (ℂ × {𝐴})) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) | |
| 3 | 1, 2 | plyrem 26213 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (ℂ × {(𝐹‘𝐴)})) |
| 4 | 3 | 3adant3 1132 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (ℂ × {(𝐹‘𝐴)})) |
| 5 | simp3 1138 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐹‘𝐴) = 0) | |
| 6 | 5 | sneqd 4601 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → {(𝐹‘𝐴)} = {0}) |
| 7 | 6 | xpeq2d 5668 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (ℂ × {(𝐹‘𝐴)}) = (ℂ × {0})) |
| 8 | 4, 7 | eqtrd 2764 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (ℂ × {0})) |
| 9 | cnex 11149 | . . . 4 ⊢ ℂ ∈ V | |
| 10 | 9 | a1i 11 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → ℂ ∈ V) |
| 11 | simp1 1136 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹 ∈ (Poly‘𝑆)) | |
| 12 | plyf 26103 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹:ℂ⟶ℂ) |
| 14 | 1 | plyremlem 26212 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (◡𝐺 “ {0}) = {𝐴})) |
| 15 | 14 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (◡𝐺 “ {0}) = {𝐴})) |
| 16 | 15 | simp1d 1142 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐺 ∈ (Poly‘ℂ)) |
| 17 | plyssc 26105 | . . . . . . 7 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | |
| 18 | 17, 11 | sselid 3944 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹 ∈ (Poly‘ℂ)) |
| 19 | 15 | simp2d 1143 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (deg‘𝐺) = 1) |
| 20 | ax-1ne0 11137 | . . . . . . . . 9 ⊢ 1 ≠ 0 | |
| 21 | 20 | a1i 11 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 1 ≠ 0) |
| 22 | 19, 21 | eqnetrd 2992 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (deg‘𝐺) ≠ 0) |
| 23 | fveq2 6858 | . . . . . . . . 9 ⊢ (𝐺 = 0𝑝 → (deg‘𝐺) = (deg‘0𝑝)) | |
| 24 | dgr0 26168 | . . . . . . . . 9 ⊢ (deg‘0𝑝) = 0 | |
| 25 | 23, 24 | eqtrdi 2780 | . . . . . . . 8 ⊢ (𝐺 = 0𝑝 → (deg‘𝐺) = 0) |
| 26 | 25 | necon3i 2957 | . . . . . . 7 ⊢ ((deg‘𝐺) ≠ 0 → 𝐺 ≠ 0𝑝) |
| 27 | 22, 26 | syl 17 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐺 ≠ 0𝑝) |
| 28 | quotcl2 26210 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) | |
| 29 | 18, 16, 27, 28 | syl3anc 1373 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) |
| 30 | plymulcl 26126 | . . . . 5 ⊢ ((𝐺 ∈ (Poly‘ℂ) ∧ (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) → (𝐺 ∘f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ)) | |
| 31 | 16, 29, 30 | syl2anc 584 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐺 ∘f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ)) |
| 32 | plyf 26103 | . . . 4 ⊢ ((𝐺 ∘f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ) → (𝐺 ∘f · (𝐹 quot 𝐺)):ℂ⟶ℂ) | |
| 33 | 31, 32 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐺 ∘f · (𝐹 quot 𝐺)):ℂ⟶ℂ) |
| 34 | ofsubeq0 12183 | . . 3 ⊢ ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ (𝐺 ∘f · (𝐹 quot 𝐺)):ℂ⟶ℂ) → ((𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (ℂ × {0}) ↔ 𝐹 = (𝐺 ∘f · (𝐹 quot 𝐺)))) | |
| 35 | 10, 13, 33, 34 | syl3anc 1373 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → ((𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (ℂ × {0}) ↔ 𝐹 = (𝐺 ∘f · (𝐹 quot 𝐺)))) |
| 36 | 8, 35 | mpbid 232 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹 = (𝐺 ∘f · (𝐹 quot 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 {csn 4589 × cxp 5636 ◡ccnv 5637 “ cima 5641 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 ℂcc 11066 0cc0 11068 1c1 11069 · cmul 11073 − cmin 11405 0𝑝c0p 25570 Polycply 26089 Xpcidp 26090 degcdgr 26092 quot cquot 26198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-sum 15653 df-0p 25571 df-ply 26093 df-idp 26094 df-coe 26095 df-dgr 26096 df-quot 26199 |
| This theorem is referenced by: fta1lem 26215 vieta1lem1 26218 vieta1lem2 26219 |
| Copyright terms: Public domain | W3C validator |