| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > facth | Structured version Visualization version GIF version | ||
| Description: The factor theorem. If a polynomial 𝐹 has a root at 𝐴, then 𝐺 = 𝑥 − 𝐴 is a factor of 𝐹 (and the other factor is 𝐹 quot 𝐺). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| Ref | Expression |
|---|---|
| facth.1 | ⊢ 𝐺 = (Xp ∘f − (ℂ × {𝐴})) |
| Ref | Expression |
|---|---|
| facth | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹 = (𝐺 ∘f · (𝐹 quot 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | facth.1 | . . . . 5 ⊢ 𝐺 = (Xp ∘f − (ℂ × {𝐴})) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) | |
| 3 | 1, 2 | plyrem 26235 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (ℂ × {(𝐹‘𝐴)})) |
| 4 | 3 | 3adant3 1132 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (ℂ × {(𝐹‘𝐴)})) |
| 5 | simp3 1138 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐹‘𝐴) = 0) | |
| 6 | 5 | sneqd 4583 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → {(𝐹‘𝐴)} = {0}) |
| 7 | 6 | xpeq2d 5641 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (ℂ × {(𝐹‘𝐴)}) = (ℂ × {0})) |
| 8 | 4, 7 | eqtrd 2766 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (ℂ × {0})) |
| 9 | cnex 11082 | . . . 4 ⊢ ℂ ∈ V | |
| 10 | 9 | a1i 11 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → ℂ ∈ V) |
| 11 | simp1 1136 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹 ∈ (Poly‘𝑆)) | |
| 12 | plyf 26125 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹:ℂ⟶ℂ) |
| 14 | 1 | plyremlem 26234 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (◡𝐺 “ {0}) = {𝐴})) |
| 15 | 14 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (◡𝐺 “ {0}) = {𝐴})) |
| 16 | 15 | simp1d 1142 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐺 ∈ (Poly‘ℂ)) |
| 17 | plyssc 26127 | . . . . . . 7 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | |
| 18 | 17, 11 | sselid 3927 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹 ∈ (Poly‘ℂ)) |
| 19 | 15 | simp2d 1143 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (deg‘𝐺) = 1) |
| 20 | ax-1ne0 11070 | . . . . . . . . 9 ⊢ 1 ≠ 0 | |
| 21 | 20 | a1i 11 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 1 ≠ 0) |
| 22 | 19, 21 | eqnetrd 2995 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (deg‘𝐺) ≠ 0) |
| 23 | fveq2 6817 | . . . . . . . . 9 ⊢ (𝐺 = 0𝑝 → (deg‘𝐺) = (deg‘0𝑝)) | |
| 24 | dgr0 26190 | . . . . . . . . 9 ⊢ (deg‘0𝑝) = 0 | |
| 25 | 23, 24 | eqtrdi 2782 | . . . . . . . 8 ⊢ (𝐺 = 0𝑝 → (deg‘𝐺) = 0) |
| 26 | 25 | necon3i 2960 | . . . . . . 7 ⊢ ((deg‘𝐺) ≠ 0 → 𝐺 ≠ 0𝑝) |
| 27 | 22, 26 | syl 17 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐺 ≠ 0𝑝) |
| 28 | quotcl2 26232 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) | |
| 29 | 18, 16, 27, 28 | syl3anc 1373 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) |
| 30 | plymulcl 26148 | . . . . 5 ⊢ ((𝐺 ∈ (Poly‘ℂ) ∧ (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) → (𝐺 ∘f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ)) | |
| 31 | 16, 29, 30 | syl2anc 584 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐺 ∘f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ)) |
| 32 | plyf 26125 | . . . 4 ⊢ ((𝐺 ∘f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ) → (𝐺 ∘f · (𝐹 quot 𝐺)):ℂ⟶ℂ) | |
| 33 | 31, 32 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐺 ∘f · (𝐹 quot 𝐺)):ℂ⟶ℂ) |
| 34 | ofsubeq0 12117 | . . 3 ⊢ ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ (𝐺 ∘f · (𝐹 quot 𝐺)):ℂ⟶ℂ) → ((𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (ℂ × {0}) ↔ 𝐹 = (𝐺 ∘f · (𝐹 quot 𝐺)))) | |
| 35 | 10, 13, 33, 34 | syl3anc 1373 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → ((𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (ℂ × {0}) ↔ 𝐹 = (𝐺 ∘f · (𝐹 quot 𝐺)))) |
| 36 | 8, 35 | mpbid 232 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹 = (𝐺 ∘f · (𝐹 quot 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 {csn 4571 × cxp 5609 ◡ccnv 5610 “ cima 5614 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ∘f cof 7603 ℂcc 10999 0cc0 11001 1c1 11002 · cmul 11006 − cmin 11339 0𝑝c0p 25592 Polycply 26111 Xpcidp 26112 degcdgr 26114 quot cquot 26220 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-fz 13403 df-fzo 13550 df-fl 13691 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-rlim 15391 df-sum 15589 df-0p 25593 df-ply 26115 df-idp 26116 df-coe 26117 df-dgr 26118 df-quot 26221 |
| This theorem is referenced by: fta1lem 26237 vieta1lem1 26240 vieta1lem2 26241 |
| Copyright terms: Public domain | W3C validator |