MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facth Structured version   Visualization version   GIF version

Theorem facth 24902
Description: The factor theorem. If a polynomial 𝐹 has a root at 𝐴, then 𝐺 = 𝑥𝐴 is a factor of 𝐹 (and the other factor is 𝐹 quot 𝐺). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
facth.1 𝐺 = (Xpf − (ℂ × {𝐴}))
Assertion
Ref Expression
facth ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹 = (𝐺f · (𝐹 quot 𝐺)))

Proof of Theorem facth
StepHypRef Expression
1 facth.1 . . . . 5 𝐺 = (Xpf − (ℂ × {𝐴}))
2 eqid 2798 . . . . 5 (𝐹f − (𝐺f · (𝐹 quot 𝐺))) = (𝐹f − (𝐺f · (𝐹 quot 𝐺)))
31, 2plyrem 24901 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹f − (𝐺f · (𝐹 quot 𝐺))) = (ℂ × {(𝐹𝐴)}))
433adant3 1129 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐹f − (𝐺f · (𝐹 quot 𝐺))) = (ℂ × {(𝐹𝐴)}))
5 simp3 1135 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐹𝐴) = 0)
65sneqd 4537 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → {(𝐹𝐴)} = {0})
76xpeq2d 5549 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (ℂ × {(𝐹𝐴)}) = (ℂ × {0}))
84, 7eqtrd 2833 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐹f − (𝐺f · (𝐹 quot 𝐺))) = (ℂ × {0}))
9 cnex 10607 . . . 4 ℂ ∈ V
109a1i 11 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → ℂ ∈ V)
11 simp1 1133 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹 ∈ (Poly‘𝑆))
12 plyf 24795 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
1311, 12syl 17 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹:ℂ⟶ℂ)
141plyremlem 24900 . . . . . . 7 (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))
15143ad2ant2 1131 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))
1615simp1d 1139 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐺 ∈ (Poly‘ℂ))
17 plyssc 24797 . . . . . . 7 (Poly‘𝑆) ⊆ (Poly‘ℂ)
1817, 11sseldi 3913 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹 ∈ (Poly‘ℂ))
1915simp2d 1140 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (deg‘𝐺) = 1)
20 ax-1ne0 10595 . . . . . . . . 9 1 ≠ 0
2120a1i 11 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 1 ≠ 0)
2219, 21eqnetrd 3054 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (deg‘𝐺) ≠ 0)
23 fveq2 6645 . . . . . . . . 9 (𝐺 = 0𝑝 → (deg‘𝐺) = (deg‘0𝑝))
24 dgr0 24859 . . . . . . . . 9 (deg‘0𝑝) = 0
2523, 24eqtrdi 2849 . . . . . . . 8 (𝐺 = 0𝑝 → (deg‘𝐺) = 0)
2625necon3i 3019 . . . . . . 7 ((deg‘𝐺) ≠ 0 → 𝐺 ≠ 0𝑝)
2722, 26syl 17 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐺 ≠ 0𝑝)
28 quotcl2 24898 . . . . . 6 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ))
2918, 16, 27, 28syl3anc 1368 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ))
30 plymulcl 24818 . . . . 5 ((𝐺 ∈ (Poly‘ℂ) ∧ (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) → (𝐺f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ))
3116, 29, 30syl2anc 587 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐺f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ))
32 plyf 24795 . . . 4 ((𝐺f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ) → (𝐺f · (𝐹 quot 𝐺)):ℂ⟶ℂ)
3331, 32syl 17 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐺f · (𝐹 quot 𝐺)):ℂ⟶ℂ)
34 ofsubeq0 11622 . . 3 ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ (𝐺f · (𝐹 quot 𝐺)):ℂ⟶ℂ) → ((𝐹f − (𝐺f · (𝐹 quot 𝐺))) = (ℂ × {0}) ↔ 𝐹 = (𝐺f · (𝐹 quot 𝐺))))
3510, 13, 33, 34syl3anc 1368 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → ((𝐹f − (𝐺f · (𝐹 quot 𝐺))) = (ℂ × {0}) ↔ 𝐹 = (𝐺f · (𝐹 quot 𝐺))))
368, 35mpbid 235 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹 = (𝐺f · (𝐹 quot 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1084   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  {csn 4525   × cxp 5517  ccnv 5518  cima 5522  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387  cc 10524  0cc0 10526  1c1 10527   · cmul 10531  cmin 10859  0𝑝c0p 24273  Polycply 24781  Xpcidp 24782  degcdgr 24784   quot cquot 24886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-0p 24274  df-ply 24785  df-idp 24786  df-coe 24787  df-dgr 24788  df-quot 24887
This theorem is referenced by:  fta1lem  24903  vieta1lem1  24906  vieta1lem2  24907
  Copyright terms: Public domain W3C validator