Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  facth Structured version   Visualization version   GIF version

Theorem facth 24900
 Description: The factor theorem. If a polynomial 𝐹 has a root at 𝐴, then 𝐺 = 𝑥 − 𝐴 is a factor of 𝐹 (and the other factor is 𝐹 quot 𝐺). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
facth.1 𝐺 = (Xpf − (ℂ × {𝐴}))
Assertion
Ref Expression
facth ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹 = (𝐺f · (𝐹 quot 𝐺)))

Proof of Theorem facth
StepHypRef Expression
1 facth.1 . . . . 5 𝐺 = (Xpf − (ℂ × {𝐴}))
2 eqid 2822 . . . . 5 (𝐹f − (𝐺f · (𝐹 quot 𝐺))) = (𝐹f − (𝐺f · (𝐹 quot 𝐺)))
31, 2plyrem 24899 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹f − (𝐺f · (𝐹 quot 𝐺))) = (ℂ × {(𝐹𝐴)}))
433adant3 1129 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐹f − (𝐺f · (𝐹 quot 𝐺))) = (ℂ × {(𝐹𝐴)}))
5 simp3 1135 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐹𝐴) = 0)
65sneqd 4551 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → {(𝐹𝐴)} = {0})
76xpeq2d 5562 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (ℂ × {(𝐹𝐴)}) = (ℂ × {0}))
84, 7eqtrd 2857 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐹f − (𝐺f · (𝐹 quot 𝐺))) = (ℂ × {0}))
9 cnex 10607 . . . 4 ℂ ∈ V
109a1i 11 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → ℂ ∈ V)
11 simp1 1133 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹 ∈ (Poly‘𝑆))
12 plyf 24793 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
1311, 12syl 17 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹:ℂ⟶ℂ)
141plyremlem 24898 . . . . . . 7 (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))
15143ad2ant2 1131 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))
1615simp1d 1139 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐺 ∈ (Poly‘ℂ))
17 plyssc 24795 . . . . . . 7 (Poly‘𝑆) ⊆ (Poly‘ℂ)
1817, 11sseldi 3940 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹 ∈ (Poly‘ℂ))
1915simp2d 1140 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (deg‘𝐺) = 1)
20 ax-1ne0 10595 . . . . . . . . 9 1 ≠ 0
2120a1i 11 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 1 ≠ 0)
2219, 21eqnetrd 3078 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (deg‘𝐺) ≠ 0)
23 fveq2 6652 . . . . . . . . 9 (𝐺 = 0𝑝 → (deg‘𝐺) = (deg‘0𝑝))
24 dgr0 24857 . . . . . . . . 9 (deg‘0𝑝) = 0
2523, 24syl6eq 2873 . . . . . . . 8 (𝐺 = 0𝑝 → (deg‘𝐺) = 0)
2625necon3i 3043 . . . . . . 7 ((deg‘𝐺) ≠ 0 → 𝐺 ≠ 0𝑝)
2722, 26syl 17 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐺 ≠ 0𝑝)
28 quotcl2 24896 . . . . . 6 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ))
2918, 16, 27, 28syl3anc 1368 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ))
30 plymulcl 24816 . . . . 5 ((𝐺 ∈ (Poly‘ℂ) ∧ (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) → (𝐺f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ))
3116, 29, 30syl2anc 587 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐺f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ))
32 plyf 24793 . . . 4 ((𝐺f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ) → (𝐺f · (𝐹 quot 𝐺)):ℂ⟶ℂ)
3331, 32syl 17 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → (𝐺f · (𝐹 quot 𝐺)):ℂ⟶ℂ)
34 ofsubeq0 11622 . . 3 ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ (𝐺f · (𝐹 quot 𝐺)):ℂ⟶ℂ) → ((𝐹f − (𝐺f · (𝐹 quot 𝐺))) = (ℂ × {0}) ↔ 𝐹 = (𝐺f · (𝐹 quot 𝐺))))
3510, 13, 33, 34syl3anc 1368 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → ((𝐹f − (𝐺f · (𝐹 quot 𝐺))) = (ℂ × {0}) ↔ 𝐹 = (𝐺f · (𝐹 quot 𝐺))))
368, 35mpbid 235 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹 = (𝐺f · (𝐹 quot 𝐺)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ w3a 1084   = wceq 1538   ∈ wcel 2114   ≠ wne 3011  Vcvv 3469  {csn 4539   × cxp 5530  ◡ccnv 5531   “ cima 5535  ⟶wf 6330  ‘cfv 6334  (class class class)co 7140   ∘f cof 7392  ℂcc 10524  0cc0 10526  1c1 10527   · cmul 10531   − cmin 10859  0𝑝c0p 24271  Polycply 24779  Xpcidp 24780  degcdgr 24782   quot cquot 24884 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836  df-rlim 14837  df-sum 15034  df-0p 24272  df-ply 24783  df-idp 24784  df-coe 24785  df-dgr 24786  df-quot 24885 This theorem is referenced by:  fta1lem  24901  vieta1lem1  24904  vieta1lem2  24905
 Copyright terms: Public domain W3C validator