| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > facth | Structured version Visualization version GIF version | ||
| Description: The factor theorem. If a polynomial 𝐹 has a root at 𝐴, then 𝐺 = 𝑥 − 𝐴 is a factor of 𝐹 (and the other factor is 𝐹 quot 𝐺). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| Ref | Expression |
|---|---|
| facth.1 | ⊢ 𝐺 = (Xp ∘f − (ℂ × {𝐴})) |
| Ref | Expression |
|---|---|
| facth | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹 = (𝐺 ∘f · (𝐹 quot 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | facth.1 | . . . . 5 ⊢ 𝐺 = (Xp ∘f − (ℂ × {𝐴})) | |
| 2 | eqid 2733 | . . . . 5 ⊢ (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) | |
| 3 | 1, 2 | plyrem 26260 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (ℂ × {(𝐹‘𝐴)})) |
| 4 | 3 | 3adant3 1132 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (ℂ × {(𝐹‘𝐴)})) |
| 5 | simp3 1138 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐹‘𝐴) = 0) | |
| 6 | 5 | sneqd 4589 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → {(𝐹‘𝐴)} = {0}) |
| 7 | 6 | xpeq2d 5651 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (ℂ × {(𝐹‘𝐴)}) = (ℂ × {0})) |
| 8 | 4, 7 | eqtrd 2768 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (ℂ × {0})) |
| 9 | cnex 11098 | . . . 4 ⊢ ℂ ∈ V | |
| 10 | 9 | a1i 11 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → ℂ ∈ V) |
| 11 | simp1 1136 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹 ∈ (Poly‘𝑆)) | |
| 12 | plyf 26150 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹:ℂ⟶ℂ) |
| 14 | 1 | plyremlem 26259 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (◡𝐺 “ {0}) = {𝐴})) |
| 15 | 14 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (◡𝐺 “ {0}) = {𝐴})) |
| 16 | 15 | simp1d 1142 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐺 ∈ (Poly‘ℂ)) |
| 17 | plyssc 26152 | . . . . . . 7 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | |
| 18 | 17, 11 | sselid 3928 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹 ∈ (Poly‘ℂ)) |
| 19 | 15 | simp2d 1143 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (deg‘𝐺) = 1) |
| 20 | ax-1ne0 11086 | . . . . . . . . 9 ⊢ 1 ≠ 0 | |
| 21 | 20 | a1i 11 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 1 ≠ 0) |
| 22 | 19, 21 | eqnetrd 2996 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (deg‘𝐺) ≠ 0) |
| 23 | fveq2 6831 | . . . . . . . . 9 ⊢ (𝐺 = 0𝑝 → (deg‘𝐺) = (deg‘0𝑝)) | |
| 24 | dgr0 26215 | . . . . . . . . 9 ⊢ (deg‘0𝑝) = 0 | |
| 25 | 23, 24 | eqtrdi 2784 | . . . . . . . 8 ⊢ (𝐺 = 0𝑝 → (deg‘𝐺) = 0) |
| 26 | 25 | necon3i 2961 | . . . . . . 7 ⊢ ((deg‘𝐺) ≠ 0 → 𝐺 ≠ 0𝑝) |
| 27 | 22, 26 | syl 17 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐺 ≠ 0𝑝) |
| 28 | quotcl2 26257 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) | |
| 29 | 18, 16, 27, 28 | syl3anc 1373 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) |
| 30 | plymulcl 26173 | . . . . 5 ⊢ ((𝐺 ∈ (Poly‘ℂ) ∧ (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) → (𝐺 ∘f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ)) | |
| 31 | 16, 29, 30 | syl2anc 584 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐺 ∘f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ)) |
| 32 | plyf 26150 | . . . 4 ⊢ ((𝐺 ∘f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ) → (𝐺 ∘f · (𝐹 quot 𝐺)):ℂ⟶ℂ) | |
| 33 | 31, 32 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → (𝐺 ∘f · (𝐹 quot 𝐺)):ℂ⟶ℂ) |
| 34 | ofsubeq0 12133 | . . 3 ⊢ ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ (𝐺 ∘f · (𝐹 quot 𝐺)):ℂ⟶ℂ) → ((𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (ℂ × {0}) ↔ 𝐹 = (𝐺 ∘f · (𝐹 quot 𝐺)))) | |
| 35 | 10, 13, 33, 34 | syl3anc 1373 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → ((𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (ℂ × {0}) ↔ 𝐹 = (𝐺 ∘f · (𝐹 quot 𝐺)))) |
| 36 | 8, 35 | mpbid 232 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹 = (𝐺 ∘f · (𝐹 quot 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 {csn 4577 × cxp 5619 ◡ccnv 5620 “ cima 5624 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ∘f cof 7617 ℂcc 11015 0cc0 11017 1c1 11018 · cmul 11022 − cmin 11355 0𝑝c0p 25617 Polycply 26136 Xpcidp 26137 degcdgr 26139 quot cquot 26245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-pm 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-inf 9338 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-fz 13415 df-fzo 13562 df-fl 13703 df-seq 13916 df-exp 13976 df-hash 14245 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-clim 15402 df-rlim 15403 df-sum 15601 df-0p 25618 df-ply 26140 df-idp 26141 df-coe 26142 df-dgr 26143 df-quot 26246 |
| This theorem is referenced by: fta1lem 26262 vieta1lem1 26265 vieta1lem2 26266 |
| Copyright terms: Public domain | W3C validator |