![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovnssle | Structured version Visualization version GIF version |
Description: The (multidimensional) Lebesgue outer measure of a subset is less than the L.o.m. of the whole set. This is step (iii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
ovnssle.1 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
ovnssle.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
ovnssle.3 | ⊢ (𝜑 → 𝐵 ⊆ (ℝ ↑𝑚 𝑋)) |
Ref | Expression |
---|---|
ovnssle | ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0le0 11460 | . . . 4 ⊢ 0 ≤ 0 | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 0 ≤ 0) |
3 | fveq2 6434 | . . . . . . 7 ⊢ (𝑋 = ∅ → (voln*‘𝑋) = (voln*‘∅)) | |
4 | 3 | fveq1d 6436 | . . . . . 6 ⊢ (𝑋 = ∅ → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴)) |
5 | 4 | adantl 475 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴)) |
6 | ovnssle.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
7 | 6 | adantr 474 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴 ⊆ 𝐵) |
8 | ovnssle.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ⊆ (ℝ ↑𝑚 𝑋)) | |
9 | 8 | adantr 474 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐵 ⊆ (ℝ ↑𝑚 𝑋)) |
10 | simpr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝑋 = ∅) | |
11 | 10 | oveq2d 6922 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (ℝ ↑𝑚 𝑋) = (ℝ ↑𝑚 ∅)) |
12 | 9, 11 | sseqtrd 3867 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐵 ⊆ (ℝ ↑𝑚 ∅)) |
13 | 7, 12 | sstrd 3838 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴 ⊆ (ℝ ↑𝑚 ∅)) |
14 | 13 | ovn0val 41559 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘∅)‘𝐴) = 0) |
15 | 5, 14 | eqtrd 2862 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = 0) |
16 | 3 | fveq1d 6436 | . . . . . 6 ⊢ (𝑋 = ∅ → ((voln*‘𝑋)‘𝐵) = ((voln*‘∅)‘𝐵)) |
17 | 16 | adantl 475 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐵) = ((voln*‘∅)‘𝐵)) |
18 | 12 | ovn0val 41559 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘∅)‘𝐵) = 0) |
19 | 17, 18 | eqtrd 2862 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐵) = 0) |
20 | 15, 19 | breq12d 4887 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵) ↔ 0 ≤ 0)) |
21 | 2, 20 | mpbird 249 | . 2 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵)) |
22 | ovnssle.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
23 | 22 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin) |
24 | neqne 3008 | . . . 4 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) | |
25 | 24 | adantl 475 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
26 | 6 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴 ⊆ 𝐵) |
27 | 8 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐵 ⊆ (ℝ ↑𝑚 𝑋)) |
28 | eqid 2826 | . . 3 ⊢ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
29 | eqid 2826 | . . 3 ⊢ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐵 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐵 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
30 | 23, 25, 26, 27, 28, 29 | ovnsslelem 41569 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵)) |
31 | 21, 30 | pm2.61dan 849 | 1 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ≠ wne 3000 ∃wrex 3119 {crab 3122 ⊆ wss 3799 ∅c0 4145 ∪ ciun 4741 class class class wbr 4874 ↦ cmpt 4953 × cxp 5341 ∘ ccom 5347 ‘cfv 6124 (class class class)co 6906 ↑𝑚 cmap 8123 Xcixp 8176 Fincfn 8223 ℝcr 10252 0cc0 10253 ℝ*cxr 10391 ≤ cle 10393 ℕcn 11351 [,)cico 12466 ∏cprod 15009 volcvol 23630 Σ^csumge0 41371 voln*covoln 41545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 ax-pre-sup 10331 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-er 8010 df-ixp 8177 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-sup 8618 df-inf 8619 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-seq 13097 df-prod 15010 df-ovoln 41546 |
This theorem is referenced by: ovnome 41582 hspmbllem3 41637 |
Copyright terms: Public domain | W3C validator |