Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnssle Structured version   Visualization version   GIF version

Theorem ovnssle 46566
Description: The (multidimensional) Lebesgue outer measure of a subset is less than the L.o.m. of the whole set. This is step (iii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovnssle.1 (𝜑𝑋 ∈ Fin)
ovnssle.2 (𝜑𝐴𝐵)
ovnssle.3 (𝜑𝐵 ⊆ (ℝ ↑m 𝑋))
Assertion
Ref Expression
ovnssle (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵))

Proof of Theorem ovnssle
Dummy variables 𝑖 𝑧 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0le0 12294 . . . 4 0 ≤ 0
21a1i 11 . . 3 ((𝜑𝑋 = ∅) → 0 ≤ 0)
3 fveq2 6861 . . . . . . 7 (𝑋 = ∅ → (voln*‘𝑋) = (voln*‘∅))
43fveq1d 6863 . . . . . 6 (𝑋 = ∅ → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴))
54adantl 481 . . . . 5 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴))
6 ovnssle.2 . . . . . . . 8 (𝜑𝐴𝐵)
76adantr 480 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝐴𝐵)
8 ovnssle.3 . . . . . . . . 9 (𝜑𝐵 ⊆ (ℝ ↑m 𝑋))
98adantr 480 . . . . . . . 8 ((𝜑𝑋 = ∅) → 𝐵 ⊆ (ℝ ↑m 𝑋))
10 simpr 484 . . . . . . . . 9 ((𝜑𝑋 = ∅) → 𝑋 = ∅)
1110oveq2d 7406 . . . . . . . 8 ((𝜑𝑋 = ∅) → (ℝ ↑m 𝑋) = (ℝ ↑m ∅))
129, 11sseqtrd 3986 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝐵 ⊆ (ℝ ↑m ∅))
137, 12sstrd 3960 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐴 ⊆ (ℝ ↑m ∅))
1413ovn0val 46555 . . . . 5 ((𝜑𝑋 = ∅) → ((voln*‘∅)‘𝐴) = 0)
155, 14eqtrd 2765 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = 0)
163fveq1d 6863 . . . . . 6 (𝑋 = ∅ → ((voln*‘𝑋)‘𝐵) = ((voln*‘∅)‘𝐵))
1716adantl 481 . . . . 5 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐵) = ((voln*‘∅)‘𝐵))
1812ovn0val 46555 . . . . 5 ((𝜑𝑋 = ∅) → ((voln*‘∅)‘𝐵) = 0)
1917, 18eqtrd 2765 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐵) = 0)
2015, 19breq12d 5123 . . 3 ((𝜑𝑋 = ∅) → (((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵) ↔ 0 ≤ 0))
212, 20mpbird 257 . 2 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵))
22 ovnssle.1 . . . 4 (𝜑𝑋 ∈ Fin)
2322adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin)
24 neqne 2934 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
2524adantl 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
266adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴𝐵)
278adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐵 ⊆ (ℝ ↑m 𝑋))
28 eqid 2730 . . 3 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
29 eqid 2730 . . 3 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐵 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐵 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
3023, 25, 26, 27, 28, 29ovnsslelem 46565 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵))
3121, 30pm2.61dan 812 1 (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wrex 3054  {crab 3408  wss 3917  c0 4299   ciun 4958   class class class wbr 5110  cmpt 5191   × cxp 5639  ccom 5645  cfv 6514  (class class class)co 7390  m cmap 8802  Xcixp 8873  Fincfn 8921  cr 11074  0cc0 11075  *cxr 11214  cle 11216  cn 12193  [,)cico 13315  cprod 15876  volcvol 25371  Σ^csumge0 46367  voln*covoln 46541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-seq 13974  df-prod 15877  df-ovoln 46542
This theorem is referenced by:  ovnome  46578  hspmbllem3  46633
  Copyright terms: Public domain W3C validator