Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovnssle | Structured version Visualization version GIF version |
Description: The (multidimensional) Lebesgue outer measure of a subset is less than the L.o.m. of the whole set. This is step (iii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
ovnssle.1 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
ovnssle.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
ovnssle.3 | ⊢ (𝜑 → 𝐵 ⊆ (ℝ ↑m 𝑋)) |
Ref | Expression |
---|---|
ovnssle | ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0le0 11780 | . . . 4 ⊢ 0 ≤ 0 | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 0 ≤ 0) |
3 | fveq2 6662 | . . . . . . 7 ⊢ (𝑋 = ∅ → (voln*‘𝑋) = (voln*‘∅)) | |
4 | 3 | fveq1d 6664 | . . . . . 6 ⊢ (𝑋 = ∅ → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴)) |
5 | 4 | adantl 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴)) |
6 | ovnssle.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
7 | 6 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴 ⊆ 𝐵) |
8 | ovnssle.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ⊆ (ℝ ↑m 𝑋)) | |
9 | 8 | adantr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐵 ⊆ (ℝ ↑m 𝑋)) |
10 | simpr 488 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝑋 = ∅) | |
11 | 10 | oveq2d 7171 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (ℝ ↑m 𝑋) = (ℝ ↑m ∅)) |
12 | 9, 11 | sseqtrd 3934 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐵 ⊆ (ℝ ↑m ∅)) |
13 | 7, 12 | sstrd 3904 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴 ⊆ (ℝ ↑m ∅)) |
14 | 13 | ovn0val 43583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘∅)‘𝐴) = 0) |
15 | 5, 14 | eqtrd 2793 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = 0) |
16 | 3 | fveq1d 6664 | . . . . . 6 ⊢ (𝑋 = ∅ → ((voln*‘𝑋)‘𝐵) = ((voln*‘∅)‘𝐵)) |
17 | 16 | adantl 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐵) = ((voln*‘∅)‘𝐵)) |
18 | 12 | ovn0val 43583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘∅)‘𝐵) = 0) |
19 | 17, 18 | eqtrd 2793 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐵) = 0) |
20 | 15, 19 | breq12d 5048 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵) ↔ 0 ≤ 0)) |
21 | 2, 20 | mpbird 260 | . 2 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵)) |
22 | ovnssle.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
23 | 22 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin) |
24 | neqne 2959 | . . . 4 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) | |
25 | 24 | adantl 485 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
26 | 6 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴 ⊆ 𝐵) |
27 | 8 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐵 ⊆ (ℝ ↑m 𝑋)) |
28 | eqid 2758 | . . 3 ⊢ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
29 | eqid 2758 | . . 3 ⊢ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐵 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐵 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
30 | 23, 25, 26, 27, 28, 29 | ovnsslelem 43593 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵)) |
31 | 21, 30 | pm2.61dan 812 | 1 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∃wrex 3071 {crab 3074 ⊆ wss 3860 ∅c0 4227 ∪ ciun 4886 class class class wbr 5035 ↦ cmpt 5115 × cxp 5525 ∘ ccom 5531 ‘cfv 6339 (class class class)co 7155 ↑m cmap 8421 Xcixp 8484 Fincfn 8532 ℝcr 10579 0cc0 10580 ℝ*cxr 10717 ≤ cle 10719 ℕcn 11679 [,)cico 12786 ∏cprod 15312 volcvol 24168 Σ^csumge0 43395 voln*covoln 43569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-pre-sup 10658 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-er 8304 df-ixp 8485 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-sup 8944 df-inf 8945 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-seq 13424 df-prod 15313 df-ovoln 43570 |
This theorem is referenced by: ovnome 43606 hspmbllem3 43661 |
Copyright terms: Public domain | W3C validator |