![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovnssle | Structured version Visualization version GIF version |
Description: The (multidimensional) Lebesgue outer measure of a subset is less than the L.o.m. of the whole set. This is step (iii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
ovnssle.1 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
ovnssle.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
ovnssle.3 | ⊢ (𝜑 → 𝐵 ⊆ (ℝ ↑m 𝑋)) |
Ref | Expression |
---|---|
ovnssle | ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0le0 12365 | . . . 4 ⊢ 0 ≤ 0 | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 0 ≤ 0) |
3 | fveq2 6907 | . . . . . . 7 ⊢ (𝑋 = ∅ → (voln*‘𝑋) = (voln*‘∅)) | |
4 | 3 | fveq1d 6909 | . . . . . 6 ⊢ (𝑋 = ∅ → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴)) |
5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴)) |
6 | ovnssle.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴 ⊆ 𝐵) |
8 | ovnssle.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ⊆ (ℝ ↑m 𝑋)) | |
9 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐵 ⊆ (ℝ ↑m 𝑋)) |
10 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝑋 = ∅) | |
11 | 10 | oveq2d 7447 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (ℝ ↑m 𝑋) = (ℝ ↑m ∅)) |
12 | 9, 11 | sseqtrd 4036 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐵 ⊆ (ℝ ↑m ∅)) |
13 | 7, 12 | sstrd 4006 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴 ⊆ (ℝ ↑m ∅)) |
14 | 13 | ovn0val 46506 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘∅)‘𝐴) = 0) |
15 | 5, 14 | eqtrd 2775 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = 0) |
16 | 3 | fveq1d 6909 | . . . . . 6 ⊢ (𝑋 = ∅ → ((voln*‘𝑋)‘𝐵) = ((voln*‘∅)‘𝐵)) |
17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐵) = ((voln*‘∅)‘𝐵)) |
18 | 12 | ovn0val 46506 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘∅)‘𝐵) = 0) |
19 | 17, 18 | eqtrd 2775 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐵) = 0) |
20 | 15, 19 | breq12d 5161 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵) ↔ 0 ≤ 0)) |
21 | 2, 20 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵)) |
22 | ovnssle.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
23 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin) |
24 | neqne 2946 | . . . 4 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) | |
25 | 24 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
26 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴 ⊆ 𝐵) |
27 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐵 ⊆ (ℝ ↑m 𝑋)) |
28 | eqid 2735 | . . 3 ⊢ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
29 | eqid 2735 | . . 3 ⊢ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐵 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐵 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
30 | 23, 25, 26, 27, 28, 29 | ovnsslelem 46516 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵)) |
31 | 21, 30 | pm2.61dan 813 | 1 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 {crab 3433 ⊆ wss 3963 ∅c0 4339 ∪ ciun 4996 class class class wbr 5148 ↦ cmpt 5231 × cxp 5687 ∘ ccom 5693 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 Xcixp 8936 Fincfn 8984 ℝcr 11152 0cc0 11153 ℝ*cxr 11292 ≤ cle 11294 ℕcn 12264 [,)cico 13386 ∏cprod 15936 volcvol 25512 Σ^csumge0 46318 voln*covoln 46492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-seq 14040 df-prod 15937 df-ovoln 46493 |
This theorem is referenced by: ovnome 46529 hspmbllem3 46584 |
Copyright terms: Public domain | W3C validator |