| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ovnssle | Structured version Visualization version GIF version | ||
| Description: The (multidimensional) Lebesgue outer measure of a subset is less than the L.o.m. of the whole set. This is step (iii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| ovnssle.1 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| ovnssle.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| ovnssle.3 | ⊢ (𝜑 → 𝐵 ⊆ (ℝ ↑m 𝑋)) |
| Ref | Expression |
|---|---|
| ovnssle | ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0le0 12226 | . . . 4 ⊢ 0 ≤ 0 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 0 ≤ 0) |
| 3 | fveq2 6822 | . . . . . . 7 ⊢ (𝑋 = ∅ → (voln*‘𝑋) = (voln*‘∅)) | |
| 4 | 3 | fveq1d 6824 | . . . . . 6 ⊢ (𝑋 = ∅ → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴)) |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴)) |
| 6 | ovnssle.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴 ⊆ 𝐵) |
| 8 | ovnssle.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ⊆ (ℝ ↑m 𝑋)) | |
| 9 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐵 ⊆ (ℝ ↑m 𝑋)) |
| 10 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝑋 = ∅) | |
| 11 | 10 | oveq2d 7362 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (ℝ ↑m 𝑋) = (ℝ ↑m ∅)) |
| 12 | 9, 11 | sseqtrd 3971 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐵 ⊆ (ℝ ↑m ∅)) |
| 13 | 7, 12 | sstrd 3945 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴 ⊆ (ℝ ↑m ∅)) |
| 14 | 13 | ovn0val 46594 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘∅)‘𝐴) = 0) |
| 15 | 5, 14 | eqtrd 2766 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = 0) |
| 16 | 3 | fveq1d 6824 | . . . . . 6 ⊢ (𝑋 = ∅ → ((voln*‘𝑋)‘𝐵) = ((voln*‘∅)‘𝐵)) |
| 17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐵) = ((voln*‘∅)‘𝐵)) |
| 18 | 12 | ovn0val 46594 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘∅)‘𝐵) = 0) |
| 19 | 17, 18 | eqtrd 2766 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐵) = 0) |
| 20 | 15, 19 | breq12d 5104 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵) ↔ 0 ≤ 0)) |
| 21 | 2, 20 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵)) |
| 22 | ovnssle.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 23 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin) |
| 24 | neqne 2936 | . . . 4 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) | |
| 25 | 24 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
| 26 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴 ⊆ 𝐵) |
| 27 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐵 ⊆ (ℝ ↑m 𝑋)) |
| 28 | eqid 2731 | . . 3 ⊢ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
| 29 | eqid 2731 | . . 3 ⊢ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐵 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐵 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
| 30 | 23, 25, 26, 27, 28, 29 | ovnsslelem 46604 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵)) |
| 31 | 21, 30 | pm2.61dan 812 | 1 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 {crab 3395 ⊆ wss 3902 ∅c0 4283 ∪ ciun 4941 class class class wbr 5091 ↦ cmpt 5172 × cxp 5614 ∘ ccom 5620 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 Xcixp 8821 Fincfn 8869 ℝcr 11005 0cc0 11006 ℝ*cxr 11145 ≤ cle 11147 ℕcn 12125 [,)cico 13247 ∏cprod 15810 volcvol 25392 Σ^csumge0 46406 voln*covoln 46580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-seq 13909 df-prod 15811 df-ovoln 46581 |
| This theorem is referenced by: ovnome 46617 hspmbllem3 46672 |
| Copyright terms: Public domain | W3C validator |