Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovnssle | Structured version Visualization version GIF version |
Description: The (multidimensional) Lebesgue outer measure of a subset is less than the L.o.m. of the whole set. This is step (iii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
ovnssle.1 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
ovnssle.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
ovnssle.3 | ⊢ (𝜑 → 𝐵 ⊆ (ℝ ↑m 𝑋)) |
Ref | Expression |
---|---|
ovnssle | ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0le0 12004 | . . . 4 ⊢ 0 ≤ 0 | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 0 ≤ 0) |
3 | fveq2 6756 | . . . . . . 7 ⊢ (𝑋 = ∅ → (voln*‘𝑋) = (voln*‘∅)) | |
4 | 3 | fveq1d 6758 | . . . . . 6 ⊢ (𝑋 = ∅ → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴)) |
5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴)) |
6 | ovnssle.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴 ⊆ 𝐵) |
8 | ovnssle.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ⊆ (ℝ ↑m 𝑋)) | |
9 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐵 ⊆ (ℝ ↑m 𝑋)) |
10 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝑋 = ∅) | |
11 | 10 | oveq2d 7271 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (ℝ ↑m 𝑋) = (ℝ ↑m ∅)) |
12 | 9, 11 | sseqtrd 3957 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐵 ⊆ (ℝ ↑m ∅)) |
13 | 7, 12 | sstrd 3927 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴 ⊆ (ℝ ↑m ∅)) |
14 | 13 | ovn0val 43978 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘∅)‘𝐴) = 0) |
15 | 5, 14 | eqtrd 2778 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = 0) |
16 | 3 | fveq1d 6758 | . . . . . 6 ⊢ (𝑋 = ∅ → ((voln*‘𝑋)‘𝐵) = ((voln*‘∅)‘𝐵)) |
17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐵) = ((voln*‘∅)‘𝐵)) |
18 | 12 | ovn0val 43978 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘∅)‘𝐵) = 0) |
19 | 17, 18 | eqtrd 2778 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐵) = 0) |
20 | 15, 19 | breq12d 5083 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵) ↔ 0 ≤ 0)) |
21 | 2, 20 | mpbird 256 | . 2 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵)) |
22 | ovnssle.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
23 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin) |
24 | neqne 2950 | . . . 4 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) | |
25 | 24 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
26 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴 ⊆ 𝐵) |
27 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐵 ⊆ (ℝ ↑m 𝑋)) |
28 | eqid 2738 | . . 3 ⊢ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
29 | eqid 2738 | . . 3 ⊢ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐵 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐵 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
30 | 23, 25, 26, 27, 28, 29 | ovnsslelem 43988 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵)) |
31 | 21, 30 | pm2.61dan 809 | 1 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 {crab 3067 ⊆ wss 3883 ∅c0 4253 ∪ ciun 4921 class class class wbr 5070 ↦ cmpt 5153 × cxp 5578 ∘ ccom 5584 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Xcixp 8643 Fincfn 8691 ℝcr 10801 0cc0 10802 ℝ*cxr 10939 ≤ cle 10941 ℕcn 11903 [,)cico 13010 ∏cprod 15543 volcvol 24532 Σ^csumge0 43790 voln*covoln 43964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-seq 13650 df-prod 15544 df-ovoln 43965 |
This theorem is referenced by: ovnome 44001 hspmbllem3 44056 |
Copyright terms: Public domain | W3C validator |