Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  von0val Structured version   Visualization version   GIF version

Theorem von0val 43774
Description: The Lebesgue measure (for the zero dimensional space of reals) of every measurable set is zero. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypothesis
Ref Expression
von0val.1 (𝜑𝐴 ∈ dom (voln‘∅))
Assertion
Ref Expression
von0val (𝜑 → ((voln‘∅)‘𝐴) = 0)

Proof of Theorem von0val
StepHypRef Expression
1 0fin 8773 . . . 4 ∅ ∈ Fin
21a1i 11 . . 3 (𝜑 → ∅ ∈ Fin)
3 von0val.1 . . 3 (𝜑𝐴 ∈ dom (voln‘∅))
42, 3mblvon 43742 . 2 (𝜑 → ((voln‘∅)‘𝐴) = ((voln*‘∅)‘𝐴))
52, 3vonmblss2 43745 . . 3 (𝜑𝐴 ⊆ (ℝ ↑m ∅))
65ovn0val 43653 . 2 (𝜑 → ((voln*‘∅)‘𝐴) = 0)
74, 6eqtrd 2774 1 (𝜑 → ((voln‘∅)‘𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2114  c0 4212  dom cdm 5526  cfv 6340  Fincfn 8558  0cc0 10618  voln*covoln 43639  volncvoln 43641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-inf2 9180  ax-cc 9938  ax-ac2 9966  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695  ax-pre-sup 10696  ax-addf 10697  ax-mulf 10698
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-disj 4997  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-se 5485  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-of 7428  df-om 7603  df-1st 7717  df-2nd 7718  df-tpos 7924  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-1o 8134  df-2o 8135  df-er 8323  df-map 8442  df-pm 8443  df-ixp 8511  df-en 8559  df-dom 8560  df-sdom 8561  df-fin 8562  df-fi 8951  df-sup 8982  df-inf 8983  df-oi 9050  df-dju 9406  df-card 9444  df-acn 9447  df-ac 9619  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-div 11379  df-nn 11720  df-2 11782  df-3 11783  df-4 11784  df-5 11785  df-6 11786  df-7 11787  df-8 11788  df-9 11789  df-n0 11980  df-z 12066  df-dec 12183  df-uz 12328  df-q 12434  df-rp 12476  df-xneg 12593  df-xadd 12594  df-xmul 12595  df-ioo 12828  df-ico 12830  df-icc 12831  df-fz 12985  df-fzo 13128  df-fl 13256  df-seq 13464  df-exp 13525  df-hash 13786  df-cj 14551  df-re 14552  df-im 14553  df-sqrt 14687  df-abs 14688  df-clim 14938  df-rlim 14939  df-sum 15139  df-prod 15355  df-struct 16591  df-ndx 16592  df-slot 16593  df-base 16595  df-sets 16596  df-ress 16597  df-plusg 16684  df-mulr 16685  df-starv 16686  df-tset 16690  df-ple 16691  df-ds 16693  df-unif 16694  df-rest 16802  df-0g 16821  df-topgen 16823  df-mgm 17971  df-sgrp 18020  df-mnd 18031  df-grp 18225  df-minusg 18226  df-subg 18397  df-cmn 19029  df-abl 19030  df-mgp 19362  df-ur 19374  df-ring 19421  df-cring 19422  df-oppr 19498  df-dvdsr 19516  df-unit 19517  df-invr 19547  df-dvr 19558  df-drng 19626  df-psmet 20212  df-xmet 20213  df-met 20214  df-bl 20215  df-mopn 20216  df-cnfld 20221  df-top 21648  df-topon 21665  df-bases 21700  df-cmp 22141  df-ovol 24219  df-vol 24220  df-sumge0 43466  df-ome 43593  df-caragen 43595  df-ovoln 43640  df-voln 43642
This theorem is referenced by:  vonhoire  43775  vonioo  43785  vonicc  43788  vonsn  43794
  Copyright terms: Public domain W3C validator