| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > selbergsb | Structured version Visualization version GIF version | ||
| Description: Selberg's symmetry formula, using the definition of the Selberg function. (Contributed by Mario Carneiro, 31-May-2016.) |
| Ref | Expression |
|---|---|
| pntsval.1 | ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) |
| Ref | Expression |
|---|---|
| selbergsb | ⊢ ∃𝑐 ∈ ℝ+ ∀𝑥 ∈ (1[,)+∞)(abs‘(((𝑆‘𝑥) / 𝑥) − (2 · (log‘𝑥)))) ≤ 𝑐 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | selbergb 27480 | . 2 ⊢ ∃𝑐 ∈ ℝ+ ∀𝑥 ∈ (1[,)+∞)(abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ 𝑐 | |
| 2 | 1re 11104 | . . . . . . . . . 10 ⊢ 1 ∈ ℝ | |
| 3 | elicopnf 13337 | . . . . . . . . . 10 ⊢ (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . . . . 9 ⊢ (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) |
| 5 | 4 | simplbi 497 | . . . . . . . 8 ⊢ (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ) |
| 6 | pntsval.1 | . . . . . . . . 9 ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) | |
| 7 | 6 | pntsval 27503 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (𝑆‘𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛))))) |
| 8 | 5, 7 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ (1[,)+∞) → (𝑆‘𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛))))) |
| 9 | 8 | oveq1d 7356 | . . . . . 6 ⊢ (𝑥 ∈ (1[,)+∞) → ((𝑆‘𝑥) / 𝑥) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥)) |
| 10 | 9 | fvoveq1d 7363 | . . . . 5 ⊢ (𝑥 ∈ (1[,)+∞) → (abs‘(((𝑆‘𝑥) / 𝑥) − (2 · (log‘𝑥)))) = (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))))) |
| 11 | 10 | breq1d 5099 | . . . 4 ⊢ (𝑥 ∈ (1[,)+∞) → ((abs‘(((𝑆‘𝑥) / 𝑥) − (2 · (log‘𝑥)))) ≤ 𝑐 ↔ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ 𝑐)) |
| 12 | 11 | ralbiia 3074 | . . 3 ⊢ (∀𝑥 ∈ (1[,)+∞)(abs‘(((𝑆‘𝑥) / 𝑥) − (2 · (log‘𝑥)))) ≤ 𝑐 ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ 𝑐) |
| 13 | 12 | rexbii 3077 | . 2 ⊢ (∃𝑐 ∈ ℝ+ ∀𝑥 ∈ (1[,)+∞)(abs‘(((𝑆‘𝑥) / 𝑥) − (2 · (log‘𝑥)))) ≤ 𝑐 ↔ ∃𝑐 ∈ ℝ+ ∀𝑥 ∈ (1[,)+∞)(abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ 𝑐) |
| 14 | 1, 13 | mpbir 231 | 1 ⊢ ∃𝑐 ∈ ℝ+ ∀𝑥 ∈ (1[,)+∞)(abs‘(((𝑆‘𝑥) / 𝑥) − (2 · (log‘𝑥)))) ≤ 𝑐 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∀wral 3045 ∃wrex 3054 class class class wbr 5089 ↦ cmpt 5170 ‘cfv 6477 (class class class)co 7341 ℝcr 10997 1c1 10999 + caddc 11001 · cmul 11003 +∞cpnf 11135 ≤ cle 11139 − cmin 11336 / cdiv 11766 2c2 12172 ℝ+crp 12882 [,)cico 13239 ...cfz 13399 ⌊cfl 13686 abscabs 15133 Σcsu 15585 logclog 26483 Λcvma 27022 ψcchp 27023 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 ax-addf 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-dju 9786 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-xnn0 12447 df-z 12461 df-dec 12581 df-uz 12725 df-q 12839 df-rp 12883 df-xneg 13003 df-xadd 13004 df-xmul 13005 df-ioo 13241 df-ioc 13242 df-ico 13243 df-icc 13244 df-fz 13400 df-fzo 13547 df-fl 13688 df-mod 13766 df-seq 13901 df-exp 13961 df-fac 14173 df-bc 14202 df-hash 14230 df-shft 14966 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-limsup 15370 df-clim 15387 df-rlim 15388 df-o1 15389 df-lo1 15390 df-sum 15586 df-ef 15966 df-e 15967 df-sin 15968 df-cos 15969 df-tan 15970 df-pi 15971 df-dvds 16156 df-gcd 16398 df-prm 16575 df-pc 16741 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-starv 17168 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ds 17175 df-unif 17176 df-hom 17177 df-cco 17178 df-rest 17318 df-topn 17319 df-0g 17337 df-gsum 17338 df-topgen 17339 df-pt 17340 df-prds 17343 df-xrs 17398 df-qtop 17403 df-imas 17404 df-xps 17406 df-mre 17480 df-mrc 17481 df-acs 17483 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-submnd 18684 df-mulg 18973 df-cntz 19222 df-cmn 19687 df-psmet 21276 df-xmet 21277 df-met 21278 df-bl 21279 df-mopn 21280 df-fbas 21281 df-fg 21282 df-cnfld 21285 df-top 22802 df-topon 22819 df-topsp 22841 df-bases 22854 df-cld 22927 df-ntr 22928 df-cls 22929 df-nei 23006 df-lp 23044 df-perf 23045 df-cn 23135 df-cnp 23136 df-haus 23223 df-cmp 23295 df-tx 23470 df-hmeo 23663 df-fil 23754 df-fm 23846 df-flim 23847 df-flf 23848 df-xms 24228 df-ms 24229 df-tms 24230 df-cncf 24791 df-limc 25787 df-dv 25788 df-ulm 26306 df-log 26485 df-cxp 26486 df-atan 26797 df-em 26923 df-vma 27028 df-chp 27029 df-mu 27031 |
| This theorem is referenced by: pntrlog2bndlem4 27511 |
| Copyright terms: Public domain | W3C validator |